

Laser machining

Today's Class

- Microstereolithography
 - Advantages
 - Fundamentals of laser optics
 - Methods
 - Projection method
 - Scanning method
 - Some fundamentals of polymerization

What is Microstereolithography?

 Novel microfabrication process for fabricating high aspect ratio and complex 3D microstructures.

Evolved from the rapid prototyping industry.

UV laser beam scanned on a photopolymerizable resin.

Curing of the resin layer by layer.

Stacking of all the layers.

Motivation

Need for Microstereolithography MEMS – Worldwide Research attention

Requirement of current actuating and sensing mechanisms to be of complex 3D shapes.
Incorporation of a wide range of materials

Limitations of Conventional processes :

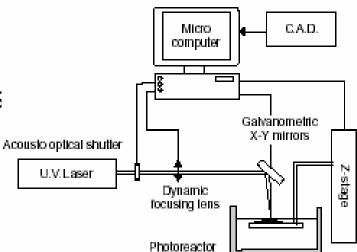
Inability to manufacture high aspect ratio and complex
 3D microstructures.

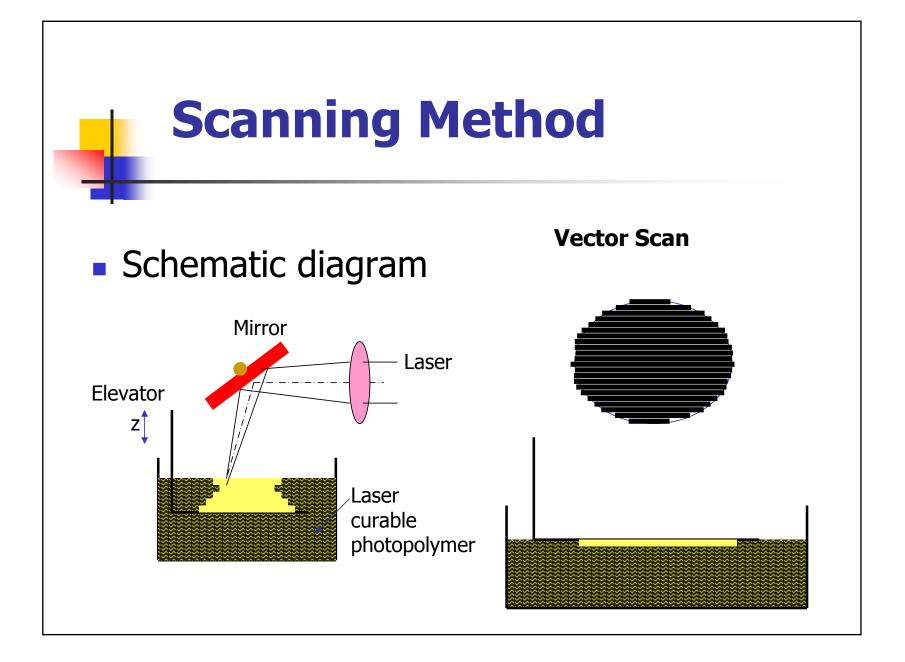
•Few semiconductors and other materials processed by current VLSI-based machining processes for MEMS.

Microstereolithography

Process Types

- Scanning method:
 - Scan one layer by focused laser beam and then the next layer
- Dynamic mask method:
 - Expose the layer to be built at a time
 - Change the mask dynamically
 - Expose the next layer

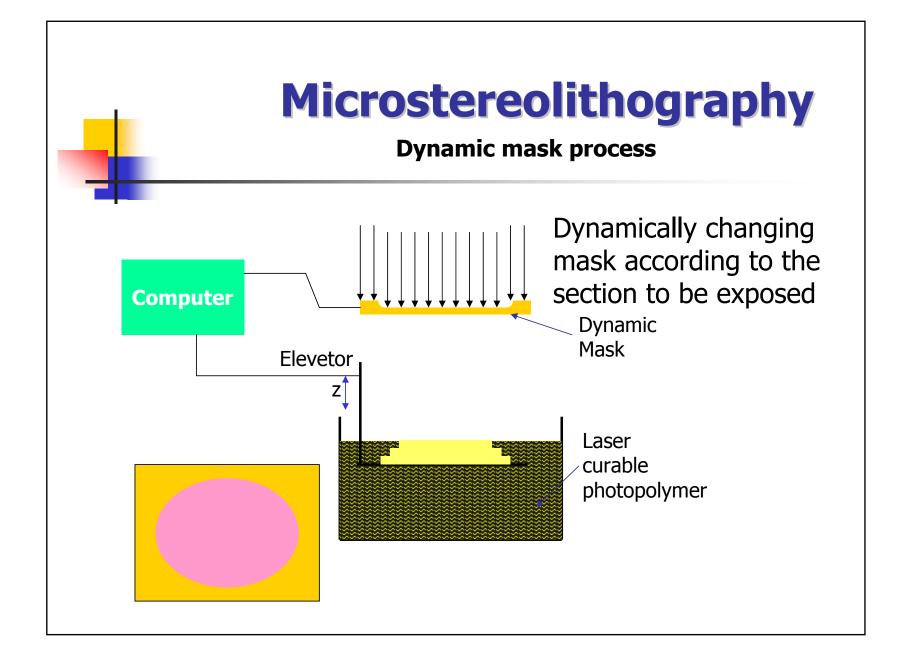

Scanning Method


Classical msl

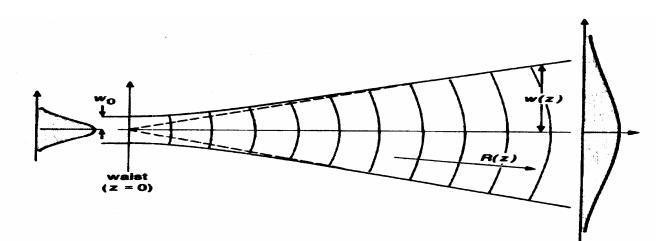
- Focusing by a dynamic lens
- Use of galvanometric mirrors
- Theoretical best point of focus not intersecting the resin surface.

Free surface technique

- All optical parts fixed
- X-Y-Z motorized translation stage
- Thickness control of deposited liquid layer difficult



Scanning Method Issues


- Factors affecting resolution of components:
 - Laser intensity
 - Motion and quality of the beam
 - Photopolymer/ monomer used
 - Focusing
 - Exposure
- In case of ceramic materials process of laser sintering is used

Scanning Method Variations

- 1. Fixed optics, move liquid tank for xy scanning
- 2. Various ways for scanning
 - Rotating galvano-scanning mirrors
 - Linearly moving mirrors
 - Raster scan vs vector scan

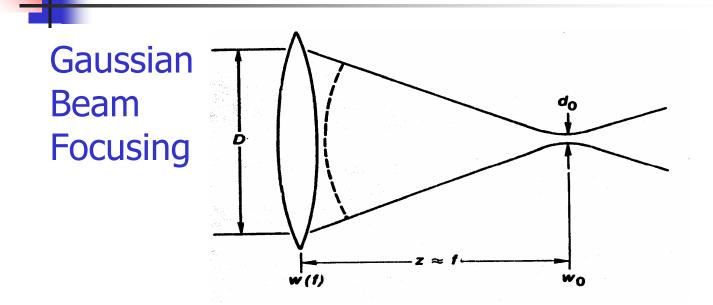
Fundamentals of Laser Beam

Gaussian Beams

Beam waist at z = 0, where the spot size is w_0 . Expansion to w = w(z) with distance z away from the laser. The beam radius of curvature, R(z), also increases with distance far away.

10

Fundamentals of Laser Beam


Expressions for spot size, radius of curvature,

$$w(z) = w_0 \sqrt{1 + (z/z_R)^2}$$
$$R(z) = z + z_R^2 / z$$

where z_R is the Rayleigh Range (the distance over which the beam remains about the same diameter), and it's given by:

$$z_{\scriptscriptstyle R} \equiv \pi w_{\scriptscriptstyle 0}^{-2}$$
 / λ

Fundamentals of Laser Beam

Airy Disk formula for spot size:

$$d = 2.44\lambda(F/D)$$

System Details

Typical System Components

Laser

Beam delivery system

 Computer controlled precision stages and a CAD design tool

Process monitoring system with a CCD camera.

UV curable resin – HDDA (1,6 – Hexanediol diacrylate)

Laser

UV Lamps

He-Cd Laser

Argon Ion Laser

Typical specifications :

Name of the supplier : Coherent Inc. Product model : Innova 300 Series (I-304) (Ar⁺ Laser) Multiline UV wavelengths : 333.4nm to 363.8nm Power : 200mW Diameter (@ 1/e² points) in mm : 1.5mm Divergence (full angle) in mrad : 0.5

UV- curable Resin

Desired Properties:-

Photosensitivity at the operating wavelength

Low viscosity to produce a smooth surface

High curing speed

- Low shrinkage during polymerization
- High absorption for low penetration of light.

Types of Resins

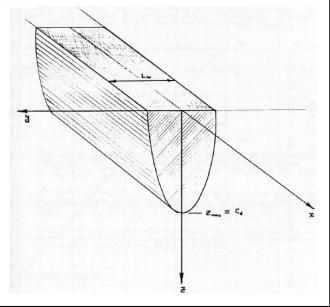
- 1)Epoxy Resins
- 2)Acrylate resins

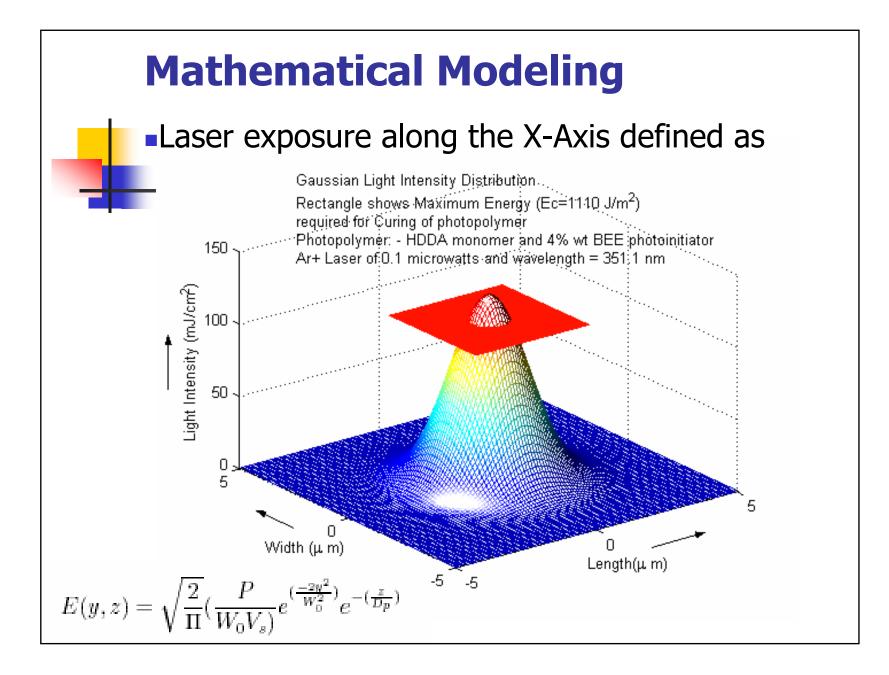
HDDA (1,6 – Hexanediol diacrylate) with 4% by wt. photoinitiator

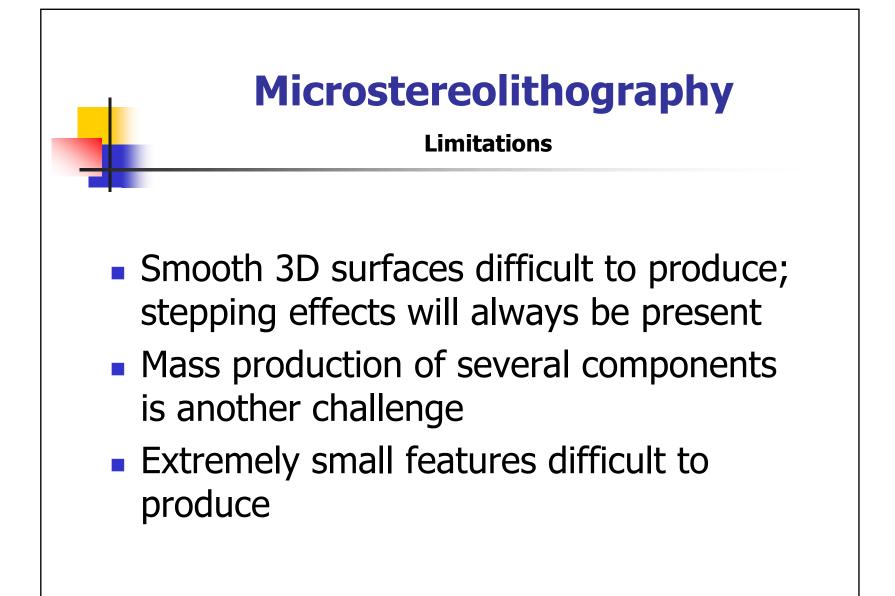
	Spot cl	naracto	eriza	tion	usin	g Os	0
	on Ion laser Edm NT						
	ens Evaluate Optim			dow Help			
	🔁 🚅 🖬 📽 🦉	1 🕶 🎯 🔜 🏢 🗸	. 🖬 🦉 🎽				
III Surl	face Data						×
×							
• Gen	Setup Y	avelengths	Variables	Draw Or	Group	Notes	
	Argon Ion laser				Ef1	5.288550	
	-	750000 Field an	gle 5.7	296e-05 Pr	'imary wa∨ln	0.364000	
SRF	RADIUS	THICKNESS	APERTURE		GLASS	SPECIAL	
ОВЈ	0.000000	1.0000e+20	1.0000e+	14	AIR		
1	3.100000	3.450000	2.5000	00 📃	BK7 C	C	
2	-20.450000	0.000000 📃	2.5000	00 📃	AIR		
AST	0.000000	0.000000	0.4585	73 AS	AIR	C	
4	0.000000	0.000000	0.4585	73 5	AIR		
IMS	0.000000	3.233582	5.2886e-	06 5			-
					ot Diagram Ana	lysis *	
	Autodraw						
	Argon Ion Laser E		LNITS: MM DES: OSLO				
ŀ	1.01		<u></u>	FULL FIELD 5.73e-05deg	ê 🌔	A 100 A	
•				0.7 FIELD 4.01e-05deg	ê - ê		
				ON-AXIS 5 Odeg 5	San -0.02	D 0.025	1 6

Mathematical Modeling

Laser exposure along the X-Axis defined as


$$E(y,z) = \sqrt{\frac{2}{\Pi}} \left(\frac{P}{W_0 V_s}\right) e^{\left(\frac{-2y^2}{W_0^2}\right)} e^{-\left(\frac{x}{D_p}\right)}$$


Curing depth working equation :


$$C_d = D_p \ln(\frac{E_{max}}{E_c})$$

Cured Line width:

$$L_w = \sqrt{2}W_0 (\ln(\frac{E_{max}}{E_c}))^{0.5}$$

Conclusions

- Microstereolithography: process details
- Mainly a process for true 3D structures of polymer and ceramic materials
- Limitation about the size of the feature
- Any suggestions to improve
 E-beam with z-stage movement

Mathematical Modeling

$$E(y, z) = \int H(x, y, z) dx / V_s \approx \frac{e^{\frac{z}{D_P}}}{V_s} \sum H(x, y, 0) \triangle x$$

Exposure (Energy per unit area)

$$LSF(y) = \int_{-\infty}^{+\infty} H(x, y) dx$$

Line Spread Function (LSF)

$$E(y,z)=\frac{aLSF(y)e^{\frac{-z}{D_P}}}{V_s}$$

Modified expression for exposure:

$$z^* = D_P \ln\left(\frac{a \ LSF(y^*)}{V_s E_c}\right)$$