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Final Set of Equations
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Solution Strategy-I

Variables axialsurfacew q,q,h,,p,m,u, ′′′′τρ &s,t,P,H,A

independent dependent

Closing relations 5

)h,p(ρ=ρ

Aum ρ=&

)itycosvis,u,geometry,(ww ρτ=τ

)properties,u/specified(qq surfacesurface
′′=′′

negligibleqaxial =′′

Equations 3 h,p,u chosen as 

dependent

system is mathematically closed
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• To illustrate the application let 

us consider forced convection 

loop

Heater

Cooler

Primary Flow Rate Sec. 

Flow

Pump

• For a given heater power, 

assuming large secondary 

flow in cooler, and a given 

pump characteristics, 

estimate, (a) steady mass flow 

rate circulating, (b) fluid 

temperature distribution
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Application-I

Mass Balance
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along the duct

For incompressible fluid, even under transient, 

instantaneous mass flow  rate does not vary along the 

length.
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Application-II

Momentum Balance

We shall integrate term by term over the entire loop
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Application-III

Acceleration 

term
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Application-IV
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Application-V
� The integrated momentum equation has only one 

unknown viz.,        m&

� For a given initial condition, the solution can be 

marched in time. Any standard procedure for solving 

ODE can be employed

m&

p∆
Pump 

Curve

Resistance 

curve

� For  steady situations, the First term drops out and any 

standard procedure for solving non-linear equations  

can be employed
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Energy Balance
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Application-VI

For steady case
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For non-pump links
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Linear variation for constant 

heat flux case and exponential 

for constant U and Tamb case.
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Natural Circulation-I

The  Flow is driven by density variations and is also called 

Gravity Driven  Flow or Thermosyphon Flow.

In these flows, momentum and 

energy are coupled and so 

need to be simultaneously 

solved.

Heater

Cooler

Primary Flow Rate Sec. 

Flow

))TT(1( RR −β−ρ=ρ

Density only a function of 

Temperature. Usually assumed 

linear.

Assumptions

TC

TH
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Boussinessq Approximation is valid. This implies that density 

variation with temperature need to be accounted for only in 

body force term of the momentum equation.

Natural Circulation-II

Transport properties (             ) are constant.k,c, pµ

Mass Balance
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along the duct
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Natural Circulation-III

Momentum Balance

The only difference is the integration of the gravitation term.
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Thus, the integrated momentum equation leads to
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This equation cannot be solved unless the temperature 

distribution is obtained. Let us consider only steady state.
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Post heater
HTT =

In cooler P)TT(U
ds

dT
cm p ∞−=&

Natural Circulation-V
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Natural Circulation-VI

Solution Procedure

1. Assume

2. Compute temperature profiles

3. Check if integrated momentum equation is satisfactory

4. Repeat till convergence

m&
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