Closure for Wall Shear

- 1/16
- ☐ In single phase wall shear is closed by friction factor, which is modelled as a function of a non-dimensional number called Reynolds number
- ☐ Search for a single parameter such as Re has been on for a long time
- ☐ Lockhart and Martinelli were the first one to obtain success. They obtained this empirically
- ☐ Many justification for this parameter has been provided heuristically
- One such justification is by Wallis and is known as the Wallis separate cylinder model

Wallis Separate Cylinder Model-II 3/16

☐ We know that

15:21

$$\frac{dp_g}{dx} = \frac{4\dot{m}_g^2}{2\rho_g A_g^2} \frac{f_g}{d_g} = \frac{4\dot{m}_g^2}{2\rho_g \pi^2 r_g^4} \frac{f_g}{2r_g} = \frac{\dot{m}_g^2}{\rho_g \pi^2} \frac{f_g}{r_g^5}$$

☐ Expressing

$$f_g = C_g Re_g^{-n} = C_g \left(\frac{\dot{m}_g}{\rho_g A_g} \frac{\rho_g d_g}{\mu_g} \right)^{-n} = C_g \left(\frac{2}{\pi} \frac{\dot{m}_g}{\mu_g r_g} \right)^{-n}$$

☐ Therefore

$$\frac{dp_g}{dx} = C_g \left(\frac{2}{\pi} \frac{\dot{m}_g}{\mu_g r_g} \right)^{-n} \left(\frac{\dot{m}_g^2}{\rho_g r_g^5 \pi^2} \right) = \frac{dp_{2\phi}}{dx}$$

15:21 Wallis Separate Cylinder Model-I 2/16

☐ Wallis treated the two phases to be flowing as two fictitious cylinders of areas A_g and A_l respectively

$$A_g = \pi r_g^2 \qquad A_l = \pi r_l^2 \qquad A = \pi R^2$$

$$\alpha = \frac{A_g}{A} = \frac{r_g^2}{R^2}$$
 $1 - \alpha = \frac{A_l}{A} = \frac{r_l^2}{R^2}$

Wallis Separate Cylinder Model-III 4/16

☐ Similarly

$$\left. \frac{dp}{dx} \right|_{gs} = C_l \left(\frac{2}{\pi} \frac{\dot{m}_g}{\mu_g R} \right)^{-n} \left(\frac{\dot{m}_g^2}{\rho_g R^5 \pi^2} \right)$$

Defining

$$\phi_g^2 = \frac{\frac{dp}{dx}\Big|_{2\phi}}{\frac{dp}{dx}\Big|_{gg}} = \left(\frac{R}{r_g}\right)^{5-n}$$

☐ Since

$$\frac{r_g}{R} = \alpha^{0.5} \qquad \Rightarrow \phi_g^2 = \left(\frac{1}{\alpha}\right)^{\frac{5-n}{2}}$$

Wallis Separate Cylinder Model-IV 5/16

☐ Similarly Defining

$$\phi_l^2 = \frac{\frac{dp}{dx}\Big|_{2\phi}}{\frac{dp}{dx}\Big|_{ls}} \Longrightarrow \phi_l^2 = \left(\frac{1}{1-\alpha}\right)^{\frac{5-n}{2}}$$

 \square Eqs. (3) and (4) imply

$$\frac{1}{\alpha} = \left(\phi_g\right)^{\frac{4}{5-n}}$$

$$\frac{1}{\alpha} = \left(\phi_g\right)^{\frac{4}{5-n}} \qquad \qquad \frac{1}{1-\alpha} = \left(\phi_l\right)^{\frac{4}{5-n}}$$

$$\alpha = \frac{1 - \alpha}{1 - \alpha}$$
Eqs. (5) and (6) imply
$$\frac{1}{\left(\phi_g\right)^{\frac{4}{5-n}}} + \frac{1}{\left(\phi_l\right)^{\frac{4}{5-n}}} = 1$$

Wallis Separate Cylinder Model-V 6/16

Defining

$$\chi^{2} = \frac{\frac{dp}{dx}\Big|_{ls}}{\frac{dp}{dx}\Big|_{gs}} = \frac{\frac{dp}{dx}\Big|_{ls}\Big/\frac{dp}{dx}\Big|_{2\phi}}{\frac{dp}{dx}\Big|_{gg}\Big/\frac{dp}{dx}\Big|_{2\phi}} = \frac{\phi_{g}^{2}}{\phi_{l}^{2}}$$

☐ This implies

$$\chi \phi_l = \phi_g$$

 \square Eqs. (7) and (8) imply

$$\frac{1}{\left(\chi\phi_{l}\right)^{\frac{4}{5-n}}} + \frac{1}{\left(\phi_{l}\right)^{\frac{4}{5-n}}} = 1 \quad \Rightarrow \frac{1}{\left(\phi_{l}\right)^{\frac{4}{5-n}}} \left(\frac{1}{\left(\chi\right)^{\frac{4}{5-n}}} + 1\right) = 1$$

Wallis Separate Cylinder Model-VI_{7/16}

$$\Rightarrow \phi_l = \left(\frac{1}{(\chi)^{\frac{4}{5-n}}} + 1\right)^{\frac{5-n}{4}}$$

$$\Rightarrow \phi_l^2 = \left(\frac{1}{(\chi)^{\frac{4}{5-n}}} + 1\right)^{\frac{5-n}{2}} = \left(\frac{1}{1-\alpha}\right)^{\frac{5-n}{2}}$$

Wallis Separate Cylinder Model-VII_{8/16}

For
$$n = 1$$

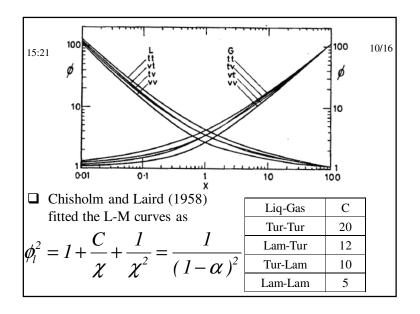
$$\Rightarrow \phi_l^2 = \left(\frac{1}{\gamma} + 1\right)^2 = \left(\frac{1}{1 - \alpha}\right)^2$$

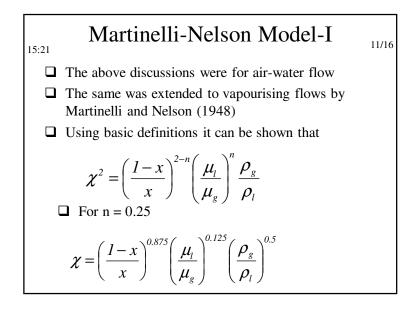
For n = 0.25
$$\Rightarrow \phi_l^2 = \left(\left(\frac{1}{\chi} \right)^{\frac{16}{19}} + 1 \right)^{\frac{19}{8}} = \left(\frac{1}{1 - \alpha} \right)^{\frac{19}{8}}$$

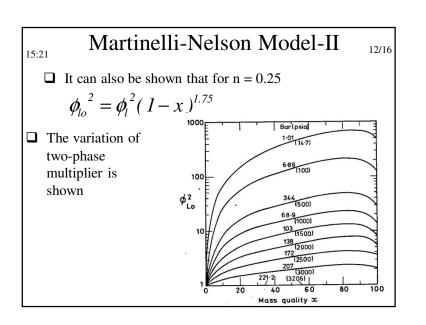
☐ The relations above imply

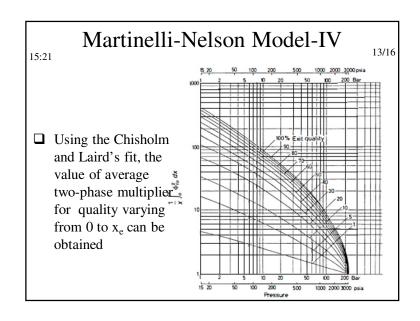
$$\phi_l^2 = f(\chi), \ \alpha = f(\chi)$$

Lockhart-Martinelli Curves-I Lockhart and Martinelli (1949) correlated experimental data for ϕ_l^2 and α with χ .









Baroczy	y-Chisholm N	Model-II
3		
Γ	G (kg/m²-s)	В
≤ 9.5	≤ 500	4.8
	$500 \le G < 1900$	2400/G
	≥ 1900	55/G ^{0.5}
9.5 ≤ Γ < 28	≤ 600	520/(ΓG ^{0.5})
	> 600	21/Γ
≥28		$15000/(\Gamma^2 G^{0.5})$

Baroczy-Chisholm Model-I

14/16

☐ The problem with Martinelli and Nelson curves was that it could not account for the influence of mass velocity

15:21

☐ It was Baroczy in 1965 came up with a complex set of curves and the same was modelled by Chisholm and fitted into a very useful correlation and is claimed to be more accurate than Baroczy curves

$$\phi_{lo}^2 = 1 + (\Gamma^2 - 1) [Bx^{0.875} (1 - x)^{0.875} + x^{1.75}]$$

Where $\Gamma^2 = \frac{v_g}{v_l} \left(\frac{\mu_g}{\mu_l}\right)^{0.2}$ The value of B is given in next slide