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Closure for Wall Shear 

� In single phase wall shear is closed by friction factor, 

which is modelled as a function of a non-dimensional 

number called Reynolds number 

� Search for a single parameter such as Re has been on 

for a long time 

� Lockhart and Martinelli were the first one to obtain 

success. They obtained this empirically 

� Many justification for this parameter has been 

provided heuristically 

� One such justification is by Wallis and is known as 

the Wallis separate cylinder model 
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� Wallis treated the two phases to be 

flowing as two fictitious cylinders of 

areas Ag and Al respectively 
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Wallis Separate Cylinder Model-II 

� We know that 
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� Similarly 
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Wallis Separate Cylinder Model-IV 

� Similarly Defining 
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Wallis Separate Cylinder Model-V 
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Wallis Separate Cylinder Model-VI 
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Wallis Separate Cylinder Model-VII 
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Lockhart-Martinelli Curves-I 

� Lockhart and Martinelli (1949) correlated experimental 

data for      and α with χ. 
2

lφ
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� Chisholm and Laird (1958) 

fitted the L-M curves as 
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Martinelli-Nelson Model-I 

� The above discussions were for air-water flow 

� The same was extended to vapourising flows by 

Martinelli and Nelson (1948) 

� Using basic definitions it can be shown that 
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Martinelli-Nelson Model-II 

� It can also be shown that for n = 0.25 
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� The variation of 

two-phase 

multiplier is 

shown  
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Martinelli-Nelson Model-IV 

� Using the Chisholm 

and Laird’s fit, the 

value of average  

two-phase multiplier 

for  quality varying 

from 0 to xe can be 

obtained 
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Baroczy-Chisholm Model-I 

� The problem with Martinelli and Nelson curves was 

that it could not account for the influence of mass 

velocity 

� It was Baroczy in 1965 came up with a complex set 

of curves and the same was modelled by Chisholm  

and fitted into a very useful correlation  and is 

claimed to be more accurate than Baroczy curves 
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Baroczy-Chisholm Model-II 

Г G (kg/m2-s) B 

≤ 9.5 ≤  500 4.8 

500 ≤ G < 1900 2400/G 

≥ 1900 55/G0.5 

9.5 ≤ Г < 28 ≤  600 520/(ГG0.5) 

> 600 21/Г 

≥28 15000/(Г2G0.5 ) 
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