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Drift Flux Model

� We had seen the development of slip flow model

� It involved inclusion of a closure for slip and newer 

definition and correlation for two-phase multiplier.

� Another way of writing the same equations in a 

different form is called the Drift Flux Model

� This model is cast in a form that corrects  homogeneous 

model.

� A closure is found for α rather than s

� We shall look at these.
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Recollection of Definitions

• Drift Velocity
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• Drift Flux

Volume flux of gas relative a surface moving with a 

velocity j
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The above is interpreted as, the volume flux of gas = conc. 

of gas x average vol. flux + relative velocity correction
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Drift Flux Concepts-I

Zuber compared this with multi-component diffusion and 

interpreted that flux of gas has convective and diffusive 

components and suggested that the drift component is 

similar to the diffusive flux.

Wallis has an interesting suggestion that for all variables 

slip flow can be viewed as the homogeneous component 

plus a correction
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Closure for α-I

Before we proceed to drift flux governing equations, let us 

see some developments on the fundamental plane and 

experimental evidences

• Volume fraction
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Note that β = α when s = 1
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Massena in 1960 extended this fit for β > 0.9 as 
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While few other correlations for β/α exist as summarised in 

Todreas and Kazimi, Zuber and Findlay approached this 

issue from a fundamental angle and we shall concentrate in 

this direction

Armand in 1946 fitted from experimental data 
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Closure for α-II
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From basic definitions,
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Thus,
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Closure for α-III
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Thus,
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� The above implies that β/α should tend to 1 as j

increases, which is contrary to experiments which 

indicates it to be 1/CA

� The possible reason for this was provided by Bankoff 

(1960) using his variable density model

� He postulated varying profiles for u and α and 

explained the same. Let us take a brief look at that
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Closure for α-IV
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Bankoff assumed the profiles for 

velocity and void as,
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Bankoff’s Model-I
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Bankoff’s Model-II
Similarly
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From Eqs. (9) and (10), we get
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Bankoff’s Model-III
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From Eqs. (11) and (12), we get
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Bankoff’s Model-IV

� The value of CA as a function of n for various m are 

given.

� It may be observed for turbulent profiles, CA hovers 

between 0.8 to 0.9

� Thus variable velocity and density profile is able to 

explain CA being less than 1
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Local Time Averaged Quantities-I

� From previous discussions we realized that 

homogeneous model overpredicts the void fraction

� This has been due to the neglect of void distribution

� To define the local phase velocities, there is a need to 

appreciate the time averaged local parameters
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Local Time Averaged Quantities-II
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All of the time averaged local quantities defined above 

can be measured.  
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� Zuber-Findlay (xxxx) introduced the void weighted 

averages 

Zuber-Findlay Model-I

� The motivation comes from the following
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� Thus the phase averaged 

velocity ug is the void weighted 

average. This is denoted by
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� Void weighted average for any parameter F can be 

written as
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Zuber-Findlay Model-II
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� Thus,
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� Depending on different flow regimes, the value of C0

and weighted drift velocity are empirically closed

Zuber-Findlay Model-III
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