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Motivation for this lecture

� The stratified flow is a special case where mixture 

correlations such as Lockhart-Martinelli fail severely

� This model is also the fundamental basis for the 

Taitel-Dukler model that has been most rational 

model to delineate flow patterns for gas-liquid flow

� Stratified flow is the one flow pattern that most want 

to avoid, if the system is heated by chemical/nuclear 

means as it leads to overheating and structural failure

� We shall restrict it to fully developed flow in 

horizontal ducts, in which the interface will be 

horizontal

16:51 2/13

Momentum Balance
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� In steady state, ug and ul will be independent of 

position, hence momentum leads to
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Geometrical Relations
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Non-Dimensional Parameters

� If we non-dimensionalise the variables as follows
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� From the dimensional relations in previous slide, 

we can write,

3

4

5 All non-dimensional geometric 

parameters are functions of lh
~

16:51 5/13

Closure Relations-I

� We have two momentum equations

� The geometric parameters Sl, Sg, Si, Al, Ag, are 

unique functions of hl and D

� Thus, in Eqs,. (1) and (2), we have 5 independent 

unknown parameters, viz., p, τl, τg, τi, and hl

� To close the set, we need to define, the three shear 

stresses

� Taitel and Dukler closed these by defining 

appropriate friction factors 
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Closure Relations-II

� They defined.
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Solution Methodology-I

� To generalise, they introduced,
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� From Eqs. (8) and (10) we can write,
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Solution Methodology-II

� We know that
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� Now having closed the set by defining shear stresses, 

we will now attempt to solve for hl and dp/dx

Similar to Eq. (7), we can write
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Solution Methodology-III

� Equating the right hand sides of Eqs. (1) and (2), 

and rearrangement leads to
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Solution Methodology-IV

� Cancelling D/D2 and Dividing by 
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� Employing Eq. (15), we get,
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Solution Methodology-V

� From Eq. (16), we can generate the non-dimensional 

variation of     for given      numerically as a root 

finding problem  
lh

~
χ

� The above equation indicates that      is a unique 

function of    ,  which is similar to previous 

observation that α is a function of 

lh
~

2χ
2χ
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Solution Methodology-VI

� It is fairly straight forward to show that     or      is a 

unique function of     . The two phase multiplier are 

defined as follows
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� The solution for     or      can similarly be obtained2
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