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Motivation for this lecture

� We had understood the patterns encountered in 

horizontal systems

� All patterns were assumed to originate from the 

instability of stratified flow

� Many empirical arguments had been used in the 

process of delineation

� In dealing with vertical flows, the arguments are 

mostly empirical

� We shall touch upon it briefly

The Patterns Encountered
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Taitel-Dukler’s Map
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Taitel-Dukler’s Model-I
16:45

� In horizontal systems we had put the map in the non-

dimensional planes with χ as the fundamental 

parameter and with F, T and K as the deciding 

parameters

� In vertical systems such a treatment is absent

� All arguments are dimensional

� Usually it is plotted in jg-jl plane

� We can assume the properties that may decide the 

flow patterns are jg, jl, D, ρl, ρg, µ l, µg, σ and g.

� With 9 variables, we can get 6 π groups. Thus, ideally 

it will be a complex map.  
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� However, the state of the art is far from satisfactory 

� There have been many papers

� Taitel-Dukler’s model seems rational (AIChE J, 26, 

345, 1980)

� Discussions are fairly complete in Kazimi and 

Todreas

� We shall briefly look at the arguments.

Taitel-Dukler’s Model-II

Bubbly-Slug Transition-I
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� In fully developed flow, there is a constant slip.

� In stationary liquid systems the final velocity reached 

by the gas bubbles is called the bubble rise velocity.

� From large number of studies, it has been established 

that the bubble rise velocity can be expressed as
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� When liquid velocity is superimposed, we can write

∞=- VVV lg 2

Bubbly-Slug Transition-II

� From basic relations, we can write

-
==

α1

V
V,

α

V
V

ls

l

gs

g
3

16:45 8/19

� From equations 1, 2 and 3, we can write
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� They argued that,

� Bubble collision frequency →∞ as α→0.3

� Bubbles wobble and coalesce at α = 0.25
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Bubbly-Slug Transition-III
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� Substituting α = 0.25 in Eq. (4) and rearranging, we get,
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Although the equation 

is linear, in a log-log 

plot it is non-linear Vls

Vgs

Bubble

Slug

Eq. (5)
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� It has been observed that in very small tubes, bubbly 

flow is not seen.

� Taitel and Dukler rationalised as follows

� It is knon that Taylor bubble velocity can be 

expressed as V = 0.35 (gD)0.5

� If the bubble rise velocity is larger than the 

Taylor bubble velocity, then the bubble will rise 

and coalesce into a Taylor bubble

� Hence the condition for bubbly flow not to 

exist is to equate the bubble rise velocity to 

Taylor bubble velocity
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Bubble-Dispersed Bubble 

Transition-I
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� As discussed in horizontal systems, if there is high 

liquid shear it will tear larger bubbles into smaller 

ones.

� However, gravity will have no role in this case.

� Taitel and Dukler took the study of Hinze (1955) on 

bubble development in agitated flows. Hinze showed 

that maximum diameter of the bubble to be

where, ε is energy dissipated per unit mass,

k = 0.725   
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Bubble-Dispersed Bubble 

Transition-II
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� The dissipation rate can be treated as follows
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� Further, when the bubbles are too small, they do not 

coalesce. Brodkey (1967) had shown that the critical 

diameter wbove which coalescence happens can be 

given as 5.0
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Bubble-Dispersed Bubble 

Transition-III
� Taitel argued that for isolated bubbles to exist,    

dmax > dcrit

16:45

� Substituting the expressions arrived for the dmax

and d crit and equating the gives
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� Kazimi and Todreas gets RHS as 4.72

� Barnea has modified it as 
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Bubble-Dispersed Bubble 

Transition-IV
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Bubble

Slug

Dispersed Bubble

Eq. (5)

Eq. (7)

Dispersed Bubble-Slug 

Transition-I
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� If we have spheres in a cubic lattice, the maximum 

packing one can obtain is 0.52. This implies that it 

is physically impossible to have bubbly flow 

beyond α = 0.52

� Further, in dispersed bubble flow, one can expect 

homogeneous model to be valid. Hence, we can 

write

52.0
)VV(

V
βα

gsls

gs
=

+
== 8

Dispersed Bubble-Slug 

Transition-I
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Eq. (5)

Eq. (7)
Eq. (8)
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Slug-Churn Flow-I
16:45 17/19

� Taitel and Dukler argued that Churn flow occurs 

before stabilization of the slug

� Thus churn flow was looked at as an entrance 

phenomenon. If the entrance length is large, then 

the entire pipe will have churn flow.

� Using several empirical arguments they came out 

with an expression for the entrance length as 














+

+
= 29.0

gD

)VV(
6.42

D

l gslse

� Thus, the transition line will depend on l/D of the 

pipe. First it will be churn followed by slug 

Slug-Churn Flow-II
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Transition to Annular Flow
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� Taitel and Dukler proposed that annular flow will 

result if the drag overcomes the weight of a 

fragmented drop

� They used the data of Hinze on the fragmented drop 

size, used the value of coefficient of drag as 0.44 

and finally assuming that Vg ~ Vgs, they arrived at 

the transition criterion as
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� Note that this will be a vertical line in Vgs-Vls plot 

� Refer to figure in previous slide


