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• We have looked into concepts to compute pressure 
drop and void fraction in two-phase flows, given 
the geometry and flow conditions and have seen 
their application

• In boilers and nuclear reactors, when the high 
pressure fluid inside the system is exposed to 
ambient conditions, either by design or by 
accident, the pressurised fluid will rush out of the 
system

• To characterize the transient behaviour in the 
system, it is necessary to predict the mass flow 
rate of the fluid issuing out of the system

Choked Flow-I
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• The issuing fluid exits typically at a speed equal to 
the local sonic speed. Such a state is called critical 
flow.

• We shall begin with single phase flows, which is 
covered in the first course in fluid mechanics and 
logically extend it to two-phase flows.

Choked Flow-II
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Choked Flow-III
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• Let us begin with the energy equation that we 
derived for single phase flow

• For steady adiabatic frictionless flow with no shaft 
work, the above equation simplifies to
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• Since at steady state, the mass flow rate along the 
duct is constant, it reduces to
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Choked Flow-IV
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• We will define stagnation 
condition as that when the velocity 
is zero or very small
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• Assuming the fluid to behave like ideal gas with 
constant specific heat,
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• From the above two equations, we can say that
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• As we are dealing with adiabatic flow with no 
friction, viz., isentropic flow
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Choked Flow-V
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• Eq. (3) implies
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Choked Flow-VI

• The mass flow rate through the duct can be written as
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• For a given po and To, mass flow rate is a function of 
p/po
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Choked Flow-VII

• For maximum flow rate,
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• Substituting Eq. (7) in Eq. (5) we get,
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Choked Flow-VIII

• Expressing for To in terms of T, we get,
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• Substituting for po/p from Eq. (7) in the above 
equation and simplifying, we get
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Choked Flow-IX

• From undergraduate course, we also know that  if 
stagnation pressure inside is high then pressure at the 
exit will be given by Eq. (7), viz., 
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• For air γ = 1.4 is satisfactory. For steam, γ = 1.3 is 
satisfactory 
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Choked Flow-X

• When Pressurised fluid that is sub-cooled or a mixture 
of steam and water is present under stagnation 
conditions, approach similar to that for single-phase 
can be employed  

• The concepts we used in single-phase are,

– Energy equation under adiabatic-frictionless conditions

– Equation of State (Ideal gas law)

– Isentropic Condition  

• Let us look at its implementation
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Homogeneous Equilibrium Model-I

• Let us begin with homogeneous equilibrium model

• From energy equation
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• Invoking isentropic flow, x can be expressed as
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• For given stagnation conditions, the mass flow rate at 
any part of the duct is now a function of local p as hf, 
hg, sf, sg, vf and vg are all functions of p

• Since equation of state for water is complex, 
analytical expression is not possible. 

• However, as properties are available in the form of 
computerised steam tables, the maximisation of mass 
flow rate can be done numerically

Homogeneous Equilibrium Model-II
7:32 AM 13/27

• The procedure for determination of mass flow rate is 
as follows.

1. For a given po and To determine so from steam 
routine

2.   Assume a p at choking plane, and get all the 
relevant saturation properties from steam 
routine

3.   Get x using Eq. (11) and     using Eq. (10) m&

4. Repeat steps 2, 3 for pressure equal to p +∆p    
and compute     and d   /dpm& m&

5.   Repeat steps 1-4 for another near by pressure

6.   Shoot for d   /dp = 0m&

Homogeneous Equilibrium Model-III
7:32 AM 14/27

• Experiments indicate that for L/D > 40, the leak rates 
given by HEM are very satisfactory and is the 
preferred model

• However, when L/D is less, velocity equilibrium does 
not set in and mass flow rate is found to be larger

• This calls for slip effects to be introduced

• We shall look at a popular model called Moody’s 
model

• In further analysis, let us do the analysis per unit area 
of the duct and obtain the mass flux G

Homogeneous Equilibrium Model-IV
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Moody’s Model-I

• The mass flow rate per unit area can be expressed as,
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• Using the expression for α (x,s) 
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• Eliminating α in Eq. (12) using the above expression and 

simplification results in 
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• Now from energy equation, stagnation enthalpy for this case 

shall be

Moody’s Model-II
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• The above equation can be rewritten to get an expression for ug
2
,

Moody’s Model-III
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• Squaring both sides of Eq. (13) and substitution of the square of 

the velocity from the above equation, we get
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• The above equation indicates G = G(x,p,s,)

Moody’s Model-IV

• Invoking isentropic flow,
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• Thus G = G(p,s), for a given s0

• Moody used,
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• Note that numerator of Eq. (14) is independent of s and hence 

it is enough to differentiate the denominator with respect to s 

and equate it to zero. This leads to
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Moody’s Model-V
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• Substituting the expression for s from Eq. (16) in Eq. (14), we 

get
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• The procedure for determination of mass flow rate is 
as follows.

1. For a given po and To determine so from steam 
routine

2.   Assume a p at choking plane, and get all the 
relevant saturation properties from steam 
routine

3.  Get x using Eq. (15), s using Eq. (16) and G

using Eq.(17)

4. Repeat steps 2, 3 for pressure equal to p +∆p    
and compute     and d   /dpm& m&

5.   Repeat steps 1-4 for another near by pressure

6.   Shoot for d   /dp = 0m&

Moody’s Model-VI
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Moody’s Model-VII

• It is interesting to note that Eq. (16) can be directly obtained by 

minimising the specific kinetic energy (kinetic energy per unit 

mass flow rate) with slip
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• Fauske used specific momentum (momentum per unit mass 

flow rate) minimisation,
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Fauske’s Model

• The procedure for computation of Mass flux using Fauske’s 

model is very similar to what has been presented for Moody’s 

model with Eq. (18) for s instead of Eq. (16)

• It has been seen that Moody’s model predicts the highest mass 

flux and Homogeneous model predicts the least with Fauske’s 

model lying in between

• As pointed above, homogeneous model predicts well for L/d >40. 

However, as L/d decreases, the mass flux increases and Fauske’s 

and Moody’s model progressively do better

• Though Moody’s model overpredicts leak rates, it is still used as a 

conservative model for safety analysis
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Non-Equilibrium Model

• Fauske conducted experiments and proposed simple 

empirical equations for the prediction of Mass fluxes

• For L/d > 40, the leak rates were found to be satisfactorily 

predicted by the homogeneous model

• When L/d = 0, the leak rates were found to be predicted by the 

orifice equation

)pp(261.0G bof −ρ= 19

• For 0 < L/d < 40, the leak rates were found to be predicted by 

the equation

)pp(261.0G crof −ρ=

where pcr is read from the figure is the next slide
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Eq. (20)
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