08:34 1/25

Introduction to LOCA

Kannan Iyer Kiyer@me.iitb.ac.in

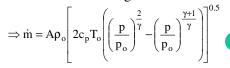
Department of Mechanical Engineering Indian Institute of Technology, Bombay 08:34

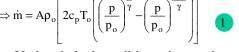
LOCA Modelling

- One of the main application of choked flows is in depressurisation of pressurised vessels due to breaks in pipes associated with the system
- In reactors these kind of accidents are called Loss of Coolant Accidents (LOCA)
- Analysis of such accidents are very complex. But for illustrative purposes, simple lumped depressurisation is discussed in this lecture
- We shall first discuss single-phase cases and then move on to two-phase cases

08:34 Single-Phase Depressurisation-I

- The total break area is A
- For single-phase case, the choked mass flow rate was obtained in the lecture on choking as





• Under choked conditions, it was shown that the critical pressure ratio was given by

$$\Rightarrow \frac{p}{p_0} = \left(\frac{2}{\gamma + 1}\right)^{\frac{\gamma - 1}{\gamma}}$$

08:34

Single-Phase Depressurisation-II

• Plugging Eq. (2) in Eq. (1) and simplification gives

$$\Rightarrow \dot{m} = A \left[\rho_o^2 2c_p T_o \left(\frac{2}{\gamma + 1} \right)^{\frac{\gamma + 1}{\gamma - 1}} \left(\frac{\gamma - 1}{2} \right) \right]^{0.5}$$
$$= A \left[\rho_o^2 2c_p \frac{\rho_o}{\rho_o R} \left(\frac{2}{\gamma + 1} \right)^{\frac{\gamma + 1}{\gamma - 1}} \left(\frac{\gamma - 1}{2} \right) \right]^{0.5}$$

Expressing c_p/R in terms of γ , the above equation can be simplified as

$$= A \left[p_o \rho_o C \right]^{0.5} \quad \text{where,} \quad C = \gamma \left(\frac{2}{\gamma + 1} \right)^{\frac{\gamma + 1}{\gamma - 1}}$$

2/25

Single-Phase Depressurisation-III

• Writing the mass balance for the fluid in the vessel

Mass Balance

$$\frac{d(V\rho)}{dt} = -\dot{m}$$

$$\Rightarrow V \frac{d(\rho)}{dt} = -\dot{m} \Rightarrow V \frac{d}{dt} \left(\frac{p}{RT} \right) = -\dot{m}$$

Treating the instantaneous pressure and density in the vessel as the stagnation pressure, and using Eq. (3) for mass flow rate, we can write

$$\Rightarrow \frac{V}{R} \frac{d}{dt} \left(\frac{p}{T} \right) = -A \sqrt{p\rho C}$$

Single-Phase Depressurisation-V^{7/25}

- We can obtain analytical solutions under some special cases
- If the heat generated is such that T = constant, then we can say $T = T_0$. In such a case energy equation will not be required

Mass Balance

$$\frac{V}{RT_o}\frac{dp}{dt} = -A\sqrt{p\frac{p}{RT_o}C}$$

$$\Rightarrow \frac{dp}{dt} = -\frac{p}{\tau} \quad \text{where, } \tau = \frac{V}{A\sqrt{CRT_o}} \qquad \Rightarrow p = p_o e^{-t/\tau}$$

Single-Phase Depressurisation-IV

Writing the energy balance for the fluid in the vessel

Energy Balance
$$\frac{d(V\rho c_{v}T)}{dt} = \dot{Q} - \dot{m}h$$

$$\frac{d V \frac{p}{RT} c_{v}T}{dt} = \dot{Q} - \dot{m}c_{p}T$$

$$\frac{Vc_{v}}{R}\frac{dp}{dt} = \dot{Q} - \dot{m}c_{p}T$$

Eqs. (4) and (5) are two ODE's which can be solved numerically with the initial conditions,

$$p = p_0$$
, $T = T_0$ at $t = 0$

08:34

Single-Phase Depressurisation-VI

• Similarly, we can also obtain an analytical solution for the adiabatic case by employing isentropic law

$$\Rightarrow T = T_o \left(\frac{p_o}{p}\right)^{1 - \gamma/\gamma}$$

Substituting in the mass balance equation $\frac{V}{R}\frac{d}{dt}\left(\frac{p}{T}\right) = -A\sqrt{p\rho C}$

$$\frac{V}{R}\frac{d}{dt} \left\langle \begin{array}{c} p \\ T_o \left\langle \begin{array}{c} \underline{p_o} \\ p \end{array} \right\rangle^{\frac{1-\gamma/\gamma}{\gamma}} \end{array} \right\rangle = -A\sqrt{\frac{p^2}{RT}C} = -Ap\sqrt{\frac{C}{RT_o\left\langle \frac{p_o}{p} \right\rangle^{\frac{1-\gamma/\gamma}{\gamma}}}}$$

Single-Phase Depressurisation-VII

$$\Rightarrow \frac{V}{RT_{o}(p_{o})^{1-\gamma/\gamma}} \frac{d}{dt} \left(p^{1+1-\gamma/\gamma} \right) = -Ap^{1+1-\gamma/2\gamma} \sqrt{\frac{C}{RT_{o}(p_{o})^{1-\gamma/\gamma}}}$$

$$\Rightarrow \frac{d}{dt} \left(p^{\frac{1}{\gamma}} \right) = -\frac{A}{V} p^{\frac{\gamma+1}{2\gamma}} \sqrt{CRT_{o}(p_{o})^{1-\gamma/\gamma}}$$

$$\Rightarrow \frac{1}{\gamma} p^{\frac{1}{\gamma}-1} \frac{dp}{dt} = -\frac{A}{V} p^{\frac{\gamma+1}{2\gamma}} \sqrt{CRT_{o}(p_{o})^{1-\gamma/\gamma}}$$

$$\Rightarrow p^{\frac{2-2\gamma-(\gamma+1)}{2\gamma}} \frac{dp}{dt} = -\frac{\gamma}{\tau} (p_{o})^{1-\gamma/2\gamma} \Rightarrow p^{\frac{1-3\gamma}{2\gamma}} \frac{dp}{dt} = -\frac{\gamma}{\tau} (p_{o})^{1-\gamma/2\gamma}$$

• Integration of the above equation gives

$$\Rightarrow \frac{2\gamma}{1-\gamma} p^{\frac{1-\gamma}{2\gamma}} \Big|_{p_0}^p = -\frac{\gamma}{\tau} (p_o)^{1-\gamma/2\gamma} t$$

$$\Rightarrow \left(p^{\frac{1-\gamma}{2\gamma}} - p_0^{\frac{1-\gamma}{2\gamma}} \right) = (p_o)^{1-\gamma/2\gamma} \frac{\gamma - 1}{2} \frac{t}{\tau}$$

$$\Rightarrow p^{\frac{1-\gamma}{2\gamma}} = (p_o)^{1-\gamma/2\gamma} \left(1 + \frac{\gamma - 1}{2} \right) \frac{t}{\tau}$$

$$\Rightarrow p = p_o \left[\left(1 + \frac{\gamma - 1}{2} \right) \frac{t}{\tau} \right]^{-\frac{2\gamma}{\gamma - 1}}$$

08:34 11/25

Two-Phase Depressurisation-I

- In water reactors, as the depressurisation is intitiated, two-phase conditions are encountered.
- The choking condition would also involve two-phase choking concepts discussed earlier
- Three models are considered for discussion:
 - Homogeneous Fluid Model
 - Separated Fluid Model
 - Bubble Rise Model

Two-Phase Depressurisation-II

- First let us consider the homogeneous model, which is valid when the depressurisation is rapid

- The fluid is treated as homogeneous
 - Mass Balance

08:34

 $V \frac{d\overline{\rho}}{dt} = -\dot{m}$

$$V\frac{d}{dt}\left\{\overline{\rho}\left(\overline{h} - \frac{p}{\overline{\rho}}\right)\right\} = -\dot{m}\overline{h} + \dot{Q}$$

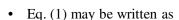
$$V \left[-\frac{dp}{dt} + \overline{\rho} \frac{d\overline{h}}{dt} + \overline{h} \frac{d\overline{\rho}}{dt} \right] = -\dot{m}\overline{h} + \dot{Q}$$

Two-Phase Depressurisation-III

• From Eqs. (1) and (2), we get

$$V\left[-\frac{dp}{dt} + \overline{\rho}\frac{d\overline{h}}{dt} - \overline{h}\frac{\dot{m}}{V}\right] = -\dot{m}\overline{h} + \dot{Q}$$

$$\Rightarrow \frac{d\overline{h}}{dt} - \frac{1}{\overline{\rho}}\frac{dp}{dt} = \frac{\dot{Q}}{V\overline{\rho}}$$

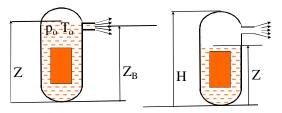


$$V \frac{d(1/\overline{v})}{dt} = -\dot{m} \implies \frac{1}{\overline{v}^2} \frac{d\overline{v}}{dt} = \frac{\dot{m}}{V}$$
$$\Rightarrow \frac{d(v_f + xv_{fg})}{dt} = \frac{\dot{m}}{V} \overline{v}^2$$

08:34

Two-Phase Depressurisation-V

• Now let us consider the separated model, which is more of a conceptual model



Two-Phase Blowdown $Z > Z_{\rm B}$

Single-Phase Blowdown $Z < Z_{\rm B}$

08:34

Two-Phase Depressurisation-IV

• As v_f and v_g are functions of p we can use chain rule to write.

$$\frac{dp}{dt}\left(\frac{dv_f}{dp} + x\frac{dv_{fg}}{dp}\right) + v_{fg}\frac{dx}{dt} = \frac{\dot{m}}{V}\bar{v}^2$$

• Similarly, Eq. (3) may be written as

$$\frac{dp}{dt} \left(\frac{dh_f}{dp} + x \frac{dh_{fg}}{dp} - \overline{v} \right) + h_{fg} \frac{dx}{dt} = \frac{\dot{Q}}{V} \overline{v}$$
 5

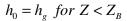
Eqs. (4) and (5) can be modified to get explicit expressions for dp/dt and dx/dt and these can be solved numerically by ODE solvers

08:34

Two-Phase Depressurisation-VI

- The overall lumped mass and energy balances are identical
- The difference is in the treatment of stagnation enthalpy of the fluid coming out of the break.
- This is modelled as follows

$$h_0 = h_f \text{ for } Z \ge Z_B$$



Thus, we need to track the interface height.

Two-Phase Depressurisation-VII

- We can continue to use the previous Eqs. (4) and (5) as the governing equations for the transient variation of pressure, p and vapour mass fraction, x
- The volume fraction α can be expressed as a function of mass fraction as

$$\alpha = \frac{1}{1 + \left(\frac{1 - x}{x}\right) \frac{\rho_g}{\rho_f}}$$

• Further for a cylindrical vessel we can write

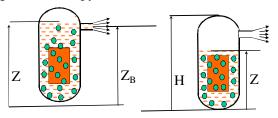
$$1-\alpha=\frac{Z}{H}$$

• Thus the transient variation of Z can be obtained

08:34

Two-Phase Depressurisation-IX

- The bubbles are assumed to be of one diameter and are assumed to rise with a uniform velocity
- The blowdown modelling is similar and expressions for stagnation enthalpy are discussed later



Two-Phase Blowdown

Single-Phase Blowdown $Z < Z_B$

 $Z > Z_B$

08:34

Two-Phase Depressurisation-VIII

- The separated model described is not that realistic as vapour is generated in the liquid and has to be transported to the top space
- Hence there will always be some bubbles in the liquid.
- Now we will discuss a more realistic model called the bubble rise model
- It is fairly similar to the previous model but needs to distribute the steam in fluid appropriately
- In this model, we consider two regions
 - · Steam Dome
 - Frothing Liquid with uniformly distributed bubbles

^{08:34} Two-Phase Depressurisation-X ^{20/25}

• Let us define

Mass of liquid - M₁

Mass of vapour in bubbles - Moh

Mass of vapour is steam dome - M_{sd}

Mass of steam in vessel – M_s

Average void fraction in the vessel - $\boldsymbol{\alpha}$

- The overall mass and energy balance continues to be the same as outlined in Eqs. (4) and (5). But tracking of interface height needs more elaborate book keeping.
- This is modelled as follows.

Two-Phase Depressurisation-XI

$$M_s = A_V H \alpha \rho_g = M_{gb} + M_{sd}$$

$$M_{sd} = A_{V}(H - Z)\rho_{\varrho}$$

$$M_{gb} = A_V H \alpha \rho_g - A_V (H - Z) \rho_g$$

$$\Rightarrow M_{ab} = A_{V} \rho_{a} (Z - (1 - \alpha)H)$$

• Further for the steam dome we can write

$$\frac{dM_{sd}}{dt} = \dot{m}_{gain} - \dot{m}_{loss}$$

08:34

Two-Phase Depressurisation-XII²²

The loss term in the previous equation can be modelled as

$$\dot{m}_{loss} = 0 \text{ for } Z \ge Z_B$$

$$\dot{m}_{loss} = \dot{m}_{break} \ for \ Z < Z_B$$

• To model the steam added in the dome due to interface movement, consider a time Δt , during which interface moves by ΔZ

mass gain in dome =
$$A_v \alpha_{gb} (V_b + \frac{dz}{dt}) \Delta t \rho_g$$

$$\Rightarrow \dot{m}_{gain} = A_V \alpha_{gb} (V_b + \frac{dz}{dt}) \rho_g$$

08:3

Two-Phase Depressurisation-XIII

$$M_{ob} = \alpha_{ob} A_{V} Z \rho_{o}$$

$$\Rightarrow \dot{m}_{gain} = \frac{M_{gb}}{Z} (V_b + \frac{dz}{dt})$$

• Substituting the expression for M_{gb} from Eq. (10) and neglecting dz/dt in comparison with V_b , we get

$$\dot{m}_{gain} = \frac{A_V \rho_g (Z - (1 - \alpha)H)}{Z} V_b$$

• Substituting the expression for \dot{m}_{gain} from Eq. (17) in Eq. (11), we get

$$\frac{d(A_{V}(H-Z)\rho_{g})}{dt} = A_{V}\rho_{g}\left(1 - (1-\alpha)\frac{H}{Z}\right)V_{b} - \dot{m}_{loss}$$

08:34

Two-Phase Depressurisation-XIV

$$\Rightarrow A_{V}(H-Z)\frac{d\rho_{g}}{dt} - A_{V}\rho_{g}\frac{(dZ)}{dt} = A_{V}\rho_{g}\left(1 - (1-\alpha)\frac{H}{Z}\right)V_{b} - \dot{m}_{loss}$$

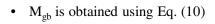
$$\Rightarrow \frac{dZ}{dt} = \frac{(H-Z)}{\rho_g} \frac{d\rho_g}{dp} \frac{dp}{dt} - \left(1 - (1-\alpha)\frac{H}{Z}\right) V_b + \frac{\dot{m}_{loss}}{\rho_g A_V}$$

- Eqs.(4) and (5) are solved to obtain p, x.
- The overall α is obtained using is Eq. (7)
- Suitable choking model is used. The definition of stagnation enthalpy is as follows

08:34 25/25

$$h_0 = \frac{M_l h_f + M_{gb} h_g}{M_l + M_{gb}} \quad for \ Z \ge Z_B$$

$$h_0 = h_g \text{ for } Z < Z_B$$



• M_l can be obtained as

$$M_l = A_V H(1 - \alpha) \rho_f$$

- Finally, Z can be obtained by solving Eq. (16)
- Thus the entire solution can be obtained numerically