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LOCA Modelling

• One of the main application of choked flows is in 

depressurisation of pressurised vessels due to breaks in 

pipes associated with the system

• In reactors these kind of accidents are called Loss of 

Coolant Accidents (LOCA)

• Analysis of such accidents are very complex. But for 

illustrative purposes, simple lumped depressurisation is 

discussed in this lecture

• We shall first discuss single-phase cases and then 

move on to two-phase cases
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Single-Phase Depressurisation-I

po To

• The total break area is A

5.0
1

o

2

o
opo

p

p

p

p
Tc2Am











































−










ρ=⇒

γ

+γ

γ
&

1

• For single-phase case, the choked 

mass flow rate was obtained in the 

lecture on choking as

• Under choked conditions, it was shown that 

the critical pressure ratio was given by
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Single-Phase Depressurisation-II

• Plugging  Eq. (2) in Eq. (1) and simplification gives 
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• Expressing cp/R in terms of γ, the above equation can be 

simplified as 
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Single-Phase Depressurisation-III
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• Writing the mass balance for the fluid in the vessel 
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• Treating the instantaneous pressure  and density in the 

vessel as the stagnation pressure, and using Eq. (3) for 

mass flow rate, we can write  
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Single-Phase Depressurisation-IV
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• Writing the energy balance for the fluid in the vessel
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• Eqs. (4) and (5) are two ODE’s which can be solved 

numerically with the initial conditions, 

0tatTT,pp oo ===

08:34 6/25

Single-Phase Depressurisation-V
• We can obtain analytical solutions under some special 

cases 

• If the heat generated is such that T = constant, then we 

can say T = To . In such a case energy equation will not 

be required
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Single-Phase Depressurisation-VI
• Similarly, we can also obtain an analytical solution for 

the adiabatic case by employing isentropic law
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• Substituting in the mass 

balance equation CpA
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Single-Phase Depressurisation-VII
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• Integration of the above equation gives 
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Single-Phase Depressurisation-VIII
08:34 10/25

Two-Phase Depressurisation-I

• In water reactors, as the depressurisation is intitiated, 

two-phase conditions are encountered.

• The choking condition would also involve two-phase 

choking concepts discussed earlier

• Three models are considered for discussion:

• Homogeneous  Fluid Model

• Separated  Fluid Model

• Bubble Rise Model
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Two-Phase Depressurisation-II
• First let us consider the homogeneous 

model, which is valid when the 

depressurisation is rapid

• The fluid is treated as homogeneous
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Two-Phase Depressurisation-III
• From Eqs. (1) and (2), we get
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Two-Phase Depressurisation-IV

• As vf and vg are functions of p we can use chain rule to 

write,
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• Similarly, Eq. (3) may be written as
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• Eqs. (4) and (5) can be modified to get explicit 

expressions for dp/dt and dx/dt and these can be solved 

numerically by ODE solvers
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• Now let us consider the separated model, which is 

more of a conceptual model
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Two-Phase Blowdown

Z > ZB

Single-Phase Blowdown

Z < ZB

ZBZ H Z

Two-Phase Depressurisation-V
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• The overall lumped mass and energy balances are 

identical

• The difference is in the treatment of stagnation enthalpy 

of the fluid coming out of the break.

• This is modelled as follows
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• Thus, we need to track the interface height. 

Two-Phase Depressurisation-VI
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• We can continue to use the previous Eqs. (4) and (5) as 

the governing equations for the transient variation of 

pressure, p and vapour mass fraction, x

Two-Phase Depressurisation-VII

• Further for a cylindrical vessel we can write

H

Z
1 =−α

• Thus the transient variation of  Z can be obtained

• The volume fraction α can be expressed as a function of 

mass fraction as
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• The separated model described is not that realistic as 

vapour is generated in the liquid and has to be 

transported to the top space

• Hence there will always be some bubbles in the liquid.

• Now we will discuss a more realistic model called the 

bubble rise model

• It is fairly similar to the previous model but needs to 

distribute the steam in fluid appropriately

• In this model, we consider two regions

• Steam Dome

• Frothing Liquid with uniformly distributed bubbles

Two-Phase Depressurisation-VIII
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Two-Phase Blowdown

Z > ZB

Single-Phase Blowdown

Z < ZB

ZBZ H Z

Two-Phase Depressurisation-IX

• The bubbles are assumed to be of one diameter and are 

assumed to rise with a uniform velocity

• The blowdown modelling is similar and expressions for 

stagnation enthalpy are discussed later
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• Let us define 

Mass of liquid  - Ml

Mass of vapour in bubbles - Mgb

Mass of vapour is steam dome - Msd

Mass of steam in vessel – Ms

Average void fraction in the vessel - α

• The overall mass and energy balance continues to be the 

same as outlined in Eqs. (4) and (5). But tracking of 

interface height needs more elaborate book keeping.

• This is modelled as follows.

Two-Phase Depressurisation-X
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Two-Phase Depressurisation-XI
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• The loss term in the previous equation can be modelled 

as
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Bloss

ZZformm

ZZfor0m

<=

≥=

&&

&

• To model the steam added in the dome due to interface 

movement, consider a time ∆t, during which interface 

moves by  ∆Z
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Two-Phase Depressurisation-XII
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• Substituting the expression for Mgb from Eq. (10) and 

neglecting dz/dt in comparison with Vb, we get 
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Two-Phase Depressurisation-XIII

• Substituting the expression for            from Eq. (17) in    

Eq. (11),  we get 
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Two-Phase Depressurisation-XIV
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• Thus, the overall solution is obtained as follows

• Eqs.(4) and (5) are solved to obtain  p, x.

• The overall α is obtained using is Eq. (7)

• Suitable choking model is used. The definition of 

stagnation enthalpy is as follows
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• Mgb is obtained using Eq. (10)

• Ml can be obtained as

fVl
)1(HAM ρα−=

• Finally, Z can be obtained by solving Eq. (16)

• Thus the entire solution can be obtained numerically 
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