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Introduction to LOCA
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LOCA Modelling

*  One of the main application of choked flows is in
depressurisation of pressurised vessels due to breaks in
pipes associated with the system

¢ In reactors these kind of accidents are called Loss of
Coolant Accidents (LOCA)

* Analysis of such accidents are very complex. But for
illustrative purposes, simple lumped depressurisation is
discussed in this lecture

*  We shall first discuss single-phase cases and then
move on to two-phase cases
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Single-Phase Depressurisation-I

e The total break area is A

* For single-phase case, the choked p. T, —=
mass flow rate was obtained in the

lecture on choking as .
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e Under choked conditions, it was shown that

the critical pressure ratio was given by
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Single-Phase Depressurisation-II

* Plugging Eq. (2) in Eq. (1) and simplification gives
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* Expressing ¢,/R in terms of y, the above equation can be
simplified as
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Single-Phase Depressurisation-III

* Writing the mass balance for the fluid in the vessel

Mass Balance d(vp)
:VM=—m :Vi(ij =—m
dt dt

RT

* Treating the instantaneous pressure and density in the
vessel as the stagnation pressure, and using Eq. (3) for
mass flow rate, we can write

Vd(p

=B =_AppC

I RN
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Single-Phase Depressurisation-1V

* Writing the energy balance for the fluid in the vessel

e VoeT)_ )
dt =Q-mh
p

dV——cT
RT©
dt
Ve, dp . |
R E =Q-mc,T ‘
* Egs. (4) and (5) are two ODE’s which can be solved

numerically with the initial conditions,

=Q-mc,T

P=p,, T=T, at t=0
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Single-Phase Depressurisation-V

* We can obtain analytical solutions under some special
cases

» If the heat generated is such that T = constant, then we
can say T =T, . In such a case energy equation will not
be required
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' Single-Phase Depressurisation-VI

» Similarly, we can also obtain an analytical solution for
the adiabatic case by employing isentropic law
-y,

/4
=T= T{&J
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 Substituting in the mass V d ( pj

balance equation R\ T =-A\ppC
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Single-Phase Depressurisation-VII
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» Integration of the above equation gives
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Two-Phase Depressurisation-I

* In water reactors, as the depressurisation is intitiated,
two-phase conditions are encountered.

* The choking condition would also involve two-phase
choking concepts discussed earlier

* Three models are considered for discussion:
* Homogeneous Fluid Model
» Separated Fluid Model
* Bubble Rise Model
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Two-Phase Depressurisation-II

* First let us consider the homogeneous
model, which is valid when the
depressurisation is rapid

* The fluid is treated as homogeneous

dp .
v - @
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Two-Phase Depressurisation-III

* From Egs. (1) and (2), we get

dp _dh —rn o
Vi—+p—- =—1mh +
{dt Pt }ﬂ / ¢
LA 1d_0 g
dt pdt Vp
* Eq. (1) may be written as

vy o Ldv_ m

dr mvid v

_\d(vf +xvg,) B m
—7 —

dt Vv
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v
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Two-Phase Depressurisation-1V

* Asv; and v, are functions of p we can use chain rule to
write,

d d ;
d_p Lﬁ_xﬁ +vf ﬂ:_mvz ‘
dt\ dp dp fdt vV

» Similarly, Eq. (3) may be written as

dp (dh, dh, d )

PS4 x5k +hfg—x:gv o

dt\ dp dp g Vv

* Egs. (4) and (5) can be modified to get explicit
expressions for dp/dt and dx/dt and these can be solved
numerically by ODE solvers
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Two-Phase Depressurisation-V

* Now let us consider the separated model, which is
more of a conceptual model

Two-Phase Blowdown Single-Phase Blowdown
7>7y 7 <7y
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Two-Phase Depressurisation-VI

* The overall lumped mass and energy balances are
identical

* The difference is in the treatment of stagnation enthalpy
of the fluid coming out of the break.

e This is modelled as follows

hy=h, forZ=2Z,

* Thus, we need to track the interface height.

hy=h, for Z<Z,
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Two-Phase Depressurisation-VII

*  We can continue to use the previous Egs. (4) and (5) as
the governing equations for the transient variation of
pressure, p and vapour mass fraction, x

* The volume fraction a can be expressed as a function of

mass fraction as ]
o0=————
]—
H(xjpg ®
x ) p;
» Further for a cylindrical vessel we can write
Z
l-a=—
H

¢ Thus the transient variation of Z can be obtained
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’ Two-Phase Depressurisation—VIIig/2

* The separated model described is not that realistic as
vapour is generated in the liquid and has to be
transported to the top space

* Hence there will always be some bubbles in the liquid.

¢ Now we will discuss a more realistic model called the
bubble rise model

» Itis fairly similar to the previous model but needs to
distribute the steam in fluid appropriately

* In this model, we consider two regions

* Steam Dome
* Frothing Liquid with uniformly distributed bubbles
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Two-Phase Depressurisation-1X

¢ The bubbles are assumed to be of one diameter and are
assumed to rise with a uniform velocity

* The blowdown modelling is similar and expressions for
stagnation enthalpy are discussed later

A

Zy H z

Two-Phase Blowdown Single-Phase Blowdown
7>7y 7 <7y
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Two-Phase Depressurisation-X

* Let us define

Mass of liquid - M,

Mass of vapour in bubbles - My,
Mass of vapour is steam dome - My
Mass of steam in vessel — M,

Average void fraction in the vessel - a

* The overall mass and energy balance continues to be the
same as outlined in Eqgs. (4) and (5). But tracking of
interface height needs more elaborate book keeping.

e This is modelled as follows.
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Two-Phase Depressurisation-XI

MSZAVHangMgb—i—Msd ‘
Msd:AV(H_Z)pg ‘
M, = AHap, ~ A,(H ~2)p,

=M, =Ap,(Z-(1-a)H) 10

Further for the steam dome we can write
dM sd __

dt - mgain My .

21725
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Two-Phase Depressurisation-XII

The loss term in the previous equation can be modelled
as

To model the steam added in the dome due to interface

movement, consider a time At, during which interface
moves by AZ

mloss = 0 for Z 2 ZB

mloss = mbreak for Z < ZB

mass gain in dome = A, &,,(V, +% )Aip,

. dz
:>mgain = Avagh(vh—i—a)pg ‘
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’ Two-Phase Depressurisation—XIIiy2

Mgb= gbAVZpg
M dz
=i, =—2(V, +—
gain 7 ( b dt) ‘

Substituting the expression for M, from Eq. (10) and
neglecting dz/dt in comparison with V, we get
_ Avpg(z‘z”‘“’H)v,, 15
Substituting the expression for mgain from Eq. (17) in
Eq. (11), we get
d(4,(H-Z)p,)
dt

gain

= AVpg (1—(]— a)%jv}; _mloss

5
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Two-Phase Depressurisation-XIV
d
= Al1-2) P p 1) A (1-(1-a) % =i,

= —= [] _(] — a)Hij + My ‘
e p, dp dt z)"" p A

iz _(H-2)dp dp _

Thus, the overall solution is obtained as follows
* Eqgs.(4) and (5) are solved to obtain p, X.
* The overall a is obtained using is Eq. (7)

* Suitable choking model is used. The definition of
stagnation enthalpy is as follows
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p =Mt Ml 757
M+M,

hy=h, for Z<Z,

* M, is obtained using Eq. (10)
* M, can be obtained as
M, =AH(I-a)p,
* Finally, Z can be obtained by solving Eq. (16)

* Thus the entire solution can be obtained numerically




