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Boiling Heat Transfer-I

• Boiling is associated with transformation of liquid to 

vapor by heating

• The formation of bubbles stir the fluid and breaks the 

boundary layers thereby increasing the heat transfer 

coefficient

• It differs from vaporization in the sense that it is 

associated with the formation of bubbles

• The onset of bubble formation is called nucleation

• In equilibrium thermodynamics, boiling is assumed 

to occur when water is heated to its saturated 

temperature  
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Homogeneous Nucleation

• If the surface has mirror finish the onset of boiling is 

considerably suppressed

• The bubbles are normally formed on the surface 

scratches. The bubbles do not appear till the wall is 

heated in excess of the saturation temperature, called 

wall superheat.

• It has been seen that under clean surface conditions, 

no boiling is seen up to 321 oC (~0.92 TC). According 

to Blander and Katz (AIChE J, 21, 833-849, 1975) the 

similar behaviour is seen in organic fluids (~0.89 TC). 

• In industrial equipment that has sufficient scratches, 

this homogeneous nucleation phenomenon is not of 

much relevance
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Hetrogeneous Nucleation-I

• Bubbles generally originate from pits

• Air trapped in cavities help in nucleation

• Experiments indicate that removal air results in 

suppression of nucleation
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Hetrogeneous Nucleation-II

• If we assume the bubble to be of hemispherical 

shape and perform a force balance between 

surface tension and pressure, we can write
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• For the bubble to grow LHS > RHS

• From thermodynamics, Clausius and Clayperon 

equation is given as
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• From Taylor series expansion, we can write
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• Substituting for (dT/dp)sat we get,
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• For bubble to grow, the condition for critical 

radius can be invoked to eliminate ∆p and we can 

write

Hetrogeneous Nucleation-II
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• For water at 1 bar, and for a 1 micron cavity, we can 

compute the wall superheat by 

substituting,         Tsat= 373 K, ; σ= 0.059 N/m ; 

hfg= 2.256 x 106J/kg ; vg= 1.672 m3/kg; R=10-6 m to 

get TW-Tsat = 32 K

Hetrogeneous Nucleation-II

• Nucleation is significantly affected if there is a 

temperature gradient normal to the wall

• In flow boiling, due to boundary layer presence, 

there is a considerable variation

• Let us start with constant wall flux case and extend it 

to the general case 
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• The fluid temperature decreases as we 

move away from the wall, the pressure 

excess must correspond to the lowest 

temperature, which is at the vertical tip of 

the bubble

• Further, as the critical size of bubbles are of the order 

10 microns, the temperature profile in this scale can 

be assumed to be linear

• Labelling the vertical coordinate as y, we can write,
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• This will ensure that at no surface of the  

bubble there will be condensation
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• For hemispherical bubble, y = Rcrit and we can write,

• For linear temperature profile in liquid, we can write,

T

V

y

• The slope will increase as heat flux is increased. 

Davis and Anderson postulated tangency of the liquid 

profile as the condition for nucleation
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• Equating the slope at the point of nucleation, we get
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• At the point of tangency, the values of temperatures of 

vapour and liquid also have to be same. Eqs. (4) and 

(5) can be rewritten as, 
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• Substituting for y from Eq. (8), we get
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• Eq. (9) is used for the case of heat flux specified 

cases, whereas Eq.(10) can be used for wall 

temperature specified cases

• Frost and Dzakowic (ASME 67-HT-61(Ht. Tr. Conf.) 

showed that
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Introduction-I
09:16

• We have understood that boiling starts with 

nucleation of bubbles in crevices

• We have also established criterion for the onset of 

bubble both in the presence of temperature gradient 

as well is in its absence.

• We shall now look at the growth of these bubbles as 

they have a say in predicting the heat transfer during 

nucleate boiling.

• The exact solution demands solution of three 

dimensional Navier-Stokes equations with complex 

boundary conditions as the interfaces have to be 

tracked.
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• We shall look at crude modelling by making several 

assumptions to get some analytical solutions that are 

illustrative

• The two extremes that are normally addressed in 

bubble growth are:

• Inertia controlled growth in the initial stages

• Heat transfer controlled growth in the latter parts 

of the growth

• We shall look at them now

Introduction-II
14/53
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• Rayleigh derived this equation by using the first law 

of thermodynamics

• The assumptions are:

• The pressure inside the bubble is constant at 

psat(TW)

• The control volume is the infinite shell of water 

with bubble interface on one side (p = constant)

• One-dimensional spherically symmetric 

incompressible flow conditions exist

Inertia Controlled regime
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• Continuity equation implies
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• The kinetic energy of the liquid from r=RB to ∞ can 

be written as
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• Invoking first law, where the change of KE should be 

equal to work done (under no heat transfer), we can 

write,

( )( )∞−−= p)T(pRR
3

4
RR2 Wsat

3

0

3

B

2

B

3

Bf ππρ &

• Differentiating  the above expression, we get

( ) ( )∞−=+ p)T(pRR4RR3RRR2R2
WsatB

2

BB

2

B

2

BBB

3

Bf
&&&&&& ππρ

• Simplifying, we get, 

f

Wsat2

BBB ρ

p)T(p
R

2

3
RR

∞-
=+ &&& 1

17/53 09:16

• Using Clayperon’s Equation,
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• Eliminating the pressure difference from Eqs.(1) and 

(2), we can write
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• At very low bubble radius, the first term is negligible 

and hence we can write,
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• Since RHS is a constant, bubble grows linearly with time
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Heat transfer Control

• Before we look at heat transfer control, let us look at 

heat transfer in semi-infinite plate

0

h, T∞

• The governing equation

0 ≤ x ≤ ∞; 0 ≤ t
2

2

x

T

t

T

α

1

∂

∂
=

∂

∂

• Boundary conditions

T(0,x) = Ti ; T(t,0) = Ts ; T(t,x→∞) = Ti

09:16

• We will link it to bubble dynamics a bit later
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• Mathematically, problems that have boundary at 

infinity are often solved by a method called similarity 

solution

1-D Transient in a Semi-Infinite Plate-II

• In this method, a new variable, called similarity 

variable is introduced

• There are systematic ways by which this can be 

derived, but often involves some qualitative 

arguments

• Thus the governing equation will be transformed into 

an ODE from PDE

• This variable is chosen such that T becomes a 

function of only this variable
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1-D Transient in a Semi-Infinite Plate-III
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1-D Transient in a Semi-Infinite Plate-IV

• Substituting for the partial derivatives in the heat 

equation, we get
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-=• Thus we get an ODE in η

• The boundary conditions

T(t,0) = Ts T(η = 0) = Ts

T(0,x) = Ti ; T(t,x→∞) = Ti T(η = ∞) = Ti
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1-D Transient in a Semi-Infinite Plate-V
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u is a 

dummy 

variable
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Error Function

∫ -
η

0

u
due

2

• The integral occurs very frequently in physics

• Though not integrable in explicit form, it has been 

integrated with series expansion and tables have been 

constructed under what is called Error Function

• It turns out that 
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2

erf(x) is tabulated in 

in many books

x=3 is as good as ∞

Erf(3) = 0.99998

• A complimentary error function 

is also defined as

erfc(x) = 1 – erf(x)
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1-D Transient in a Semi-Infinite Plate-VI

S
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1-D Transient in a Semi-Infinite Plate-VII

• For η = 1.82, θ=0.99; This implies that η = 1.82 

is for all practical purposes is ∞

( )
82.1

t4

x
82.1

5.0
=

α
⇒=η ( ) 5.0

t64.3x α=⇒

• The above numbers can be interpreted in the 

following manner

• x > 3.64 (αt)0.5 can be considered as infinitely thick

• Similarly for t < x2/(13.25 α), the plate can be 

considered infinite

• Now we will turn our attention to heat transferred
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1-D Transient in a Semi-Infinite Plate-VIII
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• The heat transferred into the 

bubble can be viewed similar 

to semi-infinite plate as 

shown

• The infinite pool can be 

viewed as the semi-infinite 

region

• Rate of vaporization can be 

estimated by using the energy 

balance as
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d
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• Using BC of RB = 0 at t = 0, implies c = 0

π
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• More complex analysis gives,
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• Bubble grows as square root of time in the later half,

• Though RB and its time derivative are functions of 

time, its product does not depend on time. This was 

exploited by Forster and Zuber to arrive at a 

correlation for heat transfer
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Pool Boiling Heat Transfer-I

Nucleate boiling Film boiling
Transition

Leidenfrost point
Single-phase

Critical heat flux

Boiling curve at 1 atm
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Pool Boiling Heat Transfer-II

• Free convection region ∆TSat < 5 oC (single phase)

• Vapor formed at the free surface

• Onset of nucleation ∆Tsat ~ 5 oC 

• Bubbles nucleate, grow and detach from the surface

• Increase of wall superheat leads to more vigorous 

nucleation and rapid increase in heat transfer

• As the superheat is increased, the vapor formation 

become vigorous, it blankets the surface and the heat 

transfer decreases. This turn around point is called 

the Critical Heat Flux or Boiling crisis

09:16 34/53

Pool Boiling Heat Transfer-III
• As the superheat is increased, more blanketing causes 

the heat transfer to drop, till the entire heated surface 

is blanketed

• Now the radiation heat transfer also starts playing a 

role and eventually, the heat transfer starts increasing 

due to increase convection and radiation heat transfer

• The second turnaround point is called Leidenfrost 

point or rewetting point.

• The heat transfer beyond this point is called film 

boiling

• We shall briefly look at some details
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Pool Boiling Heat Transfer-IV

– Liquid motion is strongly influenced by 

nucleation of bubbles at the surface.

– ‘h’ rapidly increases with wall superheat

– Heat transfer is principally due to contact 

of liquid with the surface (single-phase 

convection) and not due to vaporization.

• Nucleate Boiling (Wall super heat < 30 oC at 1 atm)

� Isolated bubbles Region 5 < ∆TSat < 10 oC 

� Jets and Columns Region (10 < ∆TSat < 30 oC at 1 atm)

– Increasing nucleation density causes 

bubbles to coalesce to form jets and slugs

– Liquid wetting impaired

– ‘h’ starts decreasing with increase in 

superheat

09:16 36/53
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Pool Boiling Heat Transfer-V
• Critical Heat Flux (Wall super heat ~30 oC at 1 atm)

� Heat transfer by conduction and 

radiation across vapor blanket

� Usually not a preferred mode of 

cooling but can occur during the ECCS 

injection in an uncovered core

• Film Boiling (Wall super heat >120 oC at 1 atm)

� Typically 1MW/m2 at 1 atm and increases with pressure

� If the wall pumps heat flux, there  is a potential for the 

wall to melt as the heat transfer coefficient is very low 

here due to vapor blanketing.
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• Transition Boiling ( 30 oC < ∆Tsat < 120 oC at 1 atm)

� Called Unstable film boiling

� Surface conditions oscillate between nucleate and film 

boiling.

Pool Boiling Heat Transfer-VI

• Boiling Heat Transfer Correlations

� Different models exist and there is no single view on this 

aspect.

� We shall just list some correlations for application 

purposes

09:16 38/53
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• Taking cue from turbulent convection heat transfer  

promoted by the movement of eddies, nucleate 

boiling heat transfer can also be represented by the 

classic Dittus-Boelter type equation

mn PrReANu =⇒

• To properly account for bubble scales, Rohsenow 

used departure bubble diameter as the length scale 

)ρρ(g

σ2
θL

gl -
∝⇒ b

θ

Ref: Von Carey, Liquid-Vapor Phase-Change Phenomenon

Models for Nucleate Boiling-I
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• If one performed an energy balance on the heated 

surface, one can write a bubble velocity scale as

qGh fg
′′= qhρV fggb

′′=⇒

fgg

b hρ

q
V

′′
=⇒

• Experiments suggest that subcooling had little 

influence on the heat transfer coefficient. Hence the 

Tsat rather than TB is used as the temperature scale

-

′′
=⇒

satW TT

q
h

Models for Nucleate Boiling-II
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• As the Reynolds number has to be that of liquid that 

cools the surface

l

b

µ

GL
R =e⇒ l

• From the previous slide, 

qGh fg
′′=

• As this mass flux can be equally viewed from either 

the liquid or the vapour standpoint, Rel is defined as

l
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µ

LVρ
R =e⇒ l

Models for Nucleate Boiling-III
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• Defining Nu to be                        Rohsenow used

• Plugging in the expressions for each non-dimensional 

number as stated, he arrived at the corrrelation
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• In the above equation, 

7.1s,33.0r,
A
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Csf ===

Models for Nucleate Boiling-IV
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• Csf is an empirical constant found by experiment and 

is tabulated in handbooks. Typically its value is 

0.013. Some have recommended value of s=1

• An alternate route has been followed by Forster and 

Zuber

• They used scales derived from bubble dynamics
25.0

2

c

2

B

c

2

Bf

cscale R

R

R/σ2

Rρ
RD =

&

l

scale

lW k

D

)TT(

q
Nu

-

′′
=

• Similarly, Re was scaled as

l

BBf

µ

RRρ
Re

&

=
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• By substituting for the bubble Radius and Bubble 

velocity as derived earlier, we can write

1

l

2 PrJaπRe
-=

• RC from our previous derivation can be written as

))T(pT(p(

ρ2
R

lsatWsat

c -)
=

• Using the above definitions, Forster and Zuber fitted 

experimental data into the form 

mn
PrReANu =⇒ A= 0.0015, n=0.62, m = 0.33
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• The above equation when substituted with 

appropriate scales reduce to the following equation

24.0

g

29.0

l

24.0

fg

5.0

79.0

l

49.0

l

45.0

pl

75.0

sat

24.0

sat

lW ρµhσ

kρcp∆T∆
00122.0

TT

q
=

-

′′

• There are other correlations. At times different 

correlations are off  by as much as 100% and one 

needs to be careful when sizing surface area for HX. 

Models for Nucleate Boiling-VII
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• Critical heat flux is the limiting factor in the 

operation of  heat flux driven systems (nuclear)

• Kuteteladze, based on his Russian work gave an 

empirical relation

( ) 25.0

gffgg σ)ρρ(ghρ131.0q -=′′

• Based on the work of Zuber, Lienhard, we can 

construct the following physics

• CHF is governed by Rayleigh-Taylor  as well as 

Kelvin-Helmholtz Instabilities,

Models for CHF-I
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• Based on inviscid flow assumption, one can show 

that Taylor wave length to be

( ))ρρ(g

σ3
π2λ

gf

T -
=

• Similarly, one can derive the Helmholtz 

wave length to be under the assumption that 

ug>>ul, ρl>> ρg

2

gg

H uρ

πσ2
λ =
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• Performing energy balance, we get

Tλ

fgg

2

T hmqλ &=′′

2

ggg d
4

π
uρm =&

• Assuming d = λT/2, and from the 

above two equations, we can write

fgg

g hρ

q

π

16
u

′′
=

• Also,
Hg

g λρ

πσ2
u =
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• Substituting for ug from the last equation into the one 

above, assuming λH= λT, and substituting the 

expression for λT, Lienhard derived

( ) 25.0

gffgg σ)ρρ(ghρ149.0q -=′′

( ) 25.0

gffgg σ)ρρ(ghρ131.0q -=′′

• This is same as Kuteteladze’s experimental fit.

• Lienhard’s model is assumed to be a better fit than 

Zuber’s. Many more corrections are available

Models for CHF-IV

• Earlier using similar arguments and using p/d =  

Zuber derived, 

6

49/53 09:16

• For the minimum critical heat flux at the 

Leidenfrost’s point, correlations are available

25.0

2

gf

gf

fgg )ρρ(

σ)ρρ(g
hρ09.0q

-

-
=′′

Berenson, 

1961

• Several others are available. See Collier and Thome, 

Carey,  Tong and Tang, etc.
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• Similar to Nusselt Condensation, we can derive

4/1

satwgg

3

fgvlg

x )TT(µk

gxh)ρρ(ρ
707.0Nu

-

-
=

• We can derive the average h as done before

• During film boiling radiation heat transfer 

also plays an important role

4/1

satwg

3

gfgvlg

x x)TT(µ

gkh)ρρ(ρ
707.0h

-

-
=
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( ) 4/1

erfaceintwall

satw

2

sat

2

wg

rad

1
ε

1

ε

1

)TT)(TT(σρ
h

+

++
=

• Since radiation and convection  is present 

simultaneously, they get coupled.

• Explicit for of effective heat transfer coefficient can 

be obtained by using the following relations

radiationconvectionoverall
h75.0hh +=

For hrad < hconv

Film Boiling-II
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+

++=

conv

radconv

rad

radconvoverall

h

h
62.2

1

h

h
25.075.0hhh

For 0 <  hrad / hconv  <  1 

• Convection has to be modified for turbulent 

conditions and relations are available

Film Boiling-III
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