Introduction to Pool Boiling
Heat Transfer
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Boiling Heat Transfer-I

Boiling is associated with transformation of liquid to
vapor by heating

It differs from vaporization in the sense that it is
associated with the formation of bubbles

The formation of bubbles stir the fluid and breaks the
boundary layers thereby increasing the heat transfer
coefficient

The onset of bubble formation is called nucleation

In equilibrium thermodynamics, boiling is assumed
to occur when water is heated to its saturated
temperature
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Homogeneous Nucleation

The bubbles are normally formed on the surface
scratches. The bubbles do not appear till the wall is
heated in excess of the saturation temperature, called
wall superheat.

If the surface has mirror finish the onset of boiling is
considerably suppressed

It has been seen that under clean surface conditions,
no boiling is seen up to 321 °C (~0.92 TC). According
to Blander and Katz (AIChE J, 21, 833-849, 1975) the
similar behaviour is seen in organic fluids (~0.89 TC).
In industrial equipment that has sufficient scratches,

this homogeneous nucleation phenomenon is not of
much relevance
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Hetrogeneous Nucleation-I

Bubbles generally originate from pits

Air trapped in cavities help in nucleation

Experiments indicate that removal air results in
suppression of nucleation
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Hetrogeneous Nucleation-II ~ **

If we assume the bubble to be of hemispherical
shape and perform a force balance between P
surface tension and pressure, we can write

(p, — p, )R> = 27RO

27Ro
For the bubble to grow LHS > RHS

(p, - p, >270 @

From thermodynamics, Clausius and Clayperon
equation is given as

bl e @
dT sat Tml v/'g
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Hetrogeneous Nucleation-1I

* From Taylor series expansion, we can write

dT
TW :Tmt(pamb )+E (pmt(TW )_ pamb )

» Substituting for (dT/dp)sat we get,

sat

T,v
TW = Tmt( pamb )+ Aht—fg(pmt ( TW )_ pamb )
fg

* For bubble to grow, the condition for critical
radius can be invoked to eliminate Ap and we can
write

T v, 20
T - Tra ( am ) = Lfg T
w sat p b hfg R .
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Hetrogeneous Nucleation-II ™

For water at 1 bar, and for a 1 micron cavity, we can
compute the wall superheat by

substituting, Tsat=373 K, ; 6= 0.059 N/m ;
hfg= 2.256 x 10°J/kg ; vg= 1.672 m’/kg; R=10° m to
get Ty Ty =32K

Nucleation is significantly affected if there is a
temperature gradient normal to the wall

In flow boiling, due to boundary layer presence,
there is a considerable variation

Let us start with constant wall flux case and extend it
to the general case

09:16The fluid temperature decreases as we 8/53

move away from the wall, the pressure

excess must correspond to the lowest T
temperature, which is at the vertical tip of
the bubble

¢ This will ensure that at no surface of the Tw
bubble there will be condensation

¢ Further, as the critical size of bubbles are of the order
10 microns, the temperature profile in this scale can
be assumed to be linear

* Labelling the vertical coordinate as y, we can write,

dr T, - T
”:_k l:k w 1
! " dy l( y ] @
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* For hemispherical bubble, y = R ;; and we can write,

v 2o @
y

\% sat P amb

= Ty _ _TuV 2—02- . 37
dy hy

* For linear temperature profile in liquid, we can vgrite,

T @

dy k,
* The slope will increase as heat flux is increased.
Davis and Anderson postulated tangency of the liquid
profile as the condition for nucleation
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* Equating the slope at the point of nucleation, we get
h g q
» At the point of tangency, the values of temperatures of
vapour and liquid also have to be same. Eqs. (4) and
(5) can be rewritten as,
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*  Substituting for y from Eq. (8), we get

1 20T, v, TW V20
Ty =T ( Puw )= 05 h X
[ T.. V. 20k, J fs f2
h, 7
A S N s
(T =T Py ) = . 24
kl [Tmrvfg 20_J
hfg

hfg

8oT,,v, q”
Ty =T Puy ) = [fZJ .
1

TW - Thu[k h k 1

(Ty =T P ) _ [SOvafg h J
fg

” _ ,
Tl :TW - 45 Tv = T;at(pamb )+ L/g_o-
“ h gy y
” T v, 5
TW B T‘ml ( pamb ) = ay + L/g_o-
ki hy ¥
1 r_ 2 T v 20
TW - Tmt ( Pa,,,b ) = —( q y + sat U fg J
YUk h g
o 12/53

* Eq. (9) is used for the case of heat flux specified
cases, whereas Eq.(10) can be used for wall
temperature specified cases

* Frost and Dzakowic (ASME 67-HT-61(Ht. Tr. Conf.)
showed that

2
8oT,,v, q" |\ 1
(Ty =T Py )Y =| — 2L =
h k, |\ pr,

12
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Introduction-I

* We have understood that boiling starts with
nucleation of bubbles in crevices

¢ We have also established criterion for the onset of
bubble both in the presence of temperature gradient
as well is in its absence.

* We shall now look at the growth of these bubbles as
they have a say in predicting the heat transfer during
nucleate boiling.

* The exact solution demands solution of three
dimensional Navier-Stokes equations with complex
boundary conditions as the interfaces have to be
tracked.
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Introduction-II

* We shall look at crude modelling by making several
assumptions to get some analytical solutions that are
illustrative

* The two extremes that are normally addressed in
bubble growth are:

* Inertia controlled growth in the initial stages

* Heat transfer controlled growth in the latter parts
of the growth
* We shall look at them now
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Inertia Controlled regime

» Rayleigh derived this equation by using the first law
of thermodynamics
* The assumptions are:
* The pressure inside the bubble is constant at
Psa(Tw)
* The control volume is the infinite shell of water
with bubble interface on one side (p = constant)
* One-dimensional spherically symmetric
incompressible flow conditions exist
* Continuity equation implies

1 9
_zg(rzvr)zo

r
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= (rZVr): C

RR
=V =%

* The kinetic energy of the liquid from r=Rp to « can
be written as
VZ
5=

T4ﬂ72drpf

Rp

oo 21 2
I47rr2drpf I RB};B
I 20 r
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1 .
=27p,RyR,’ I dr=27p RyR,’ "R =27p,RyR,’

* Invoking f1rst law, where the change of KE should be
equal to work done (under no heat transfer), we can
write,

. 4
2p, K3y =Ry = RN po( Ty ) p.)
» Differentiating the above expression, we get
27p, (R 2R, B, + R, 3R, R, )= 47R Ry (po( Ty )= p.)
* Simplifying, we get,
pgat( TW ) - poo

. 3.
RBRB+§RBZ = P, .
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* Eliminating the pressure difference from Eqs.(1) and

(2), we can write

h
(RR +jRj 26V (-, (p)

vatvg

* At very low bubble radius, the first term is negligible
and hence we can write,
3. h \%
R, =2L(1, -T,
2 T v

sat” g

i 2h,v
R = g f T _T
B \/3,1., V ( Sat(poo))

sat

(p.)

* Since RHS is a constant, bubble grows linearly with time
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» Using Clayperon’s Equation,
dp _ hy
dT Tm,vg
» Using linearized expansion, we can write
Pul Ty )= P _ hy
(T Tvat (poo )) Tvatvg
=p, - P = I, -T
P, - P Tm,vg @, -1,,(p.) 2]
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Heat transfer Control

¢ Before we look at heat transfer control, let us look at

heat transfer in semi-infinite plate

* We will link it to bubble dynamics a bit later

* The governing equation
10T 3T
a 0t 0x

* Boundary conditions

0<x<o0;0<t

T(0,x) =T;; T(t,0) =T ; T(t,x—o) =T;

hT,
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1-D Transient in a Semi-Infinite Plate-I11

* Mathematically, problems that have boundary at
infinity are often solved by a method called similarity
solution

* In this method, a new variable, called similarity
variable is introduced

* This variable is chosen such that T becomes a
function of only this variable

* Thus the governing equation will be transformed into
an ODE from PDE

* There are systematic ways by which this can be

derived, but often involves some qualitative
arguments
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1-D Transient in a Semi-Infinite Plate-I11

* In this course we shall give you the form of the
variable. Note that it will be a combination of x and t

X

N on__ 1 g x -05
(4z) ox  4at)”’ 0t~ (4a)” 7

OT dT oy dT 1

* Using chain rule

T 9 oT 0 dT 1 d’T op 1
0x° Ox Ox  Ox dy(dat)” " df ox(dat)”
AT 1
= dy? (4at)
OT dT oy dT x -05 dT  -x dT -

ot dy ot  dy (4o ) (1)7 " dy 2t(4at )7 " dy 2t
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1-D Transient in a Semi-Infinite Plate-1V

» Substituting for the partial derivatives in the heat
equation, we get
1dT -n d°T 1

ady 2t dn’ (4at)

4T _ dT
dnz T dn g -
* Thus we get an ODE in n d’T — _an_T
dn’ dn

* The boundary conditions
T(t0)=T, = T =0)=T,

T(ny) = Ti 5 T(t,X—)OO) = Ti = T(T] = OO) = Ti
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1-D Transient in a Semi-Infinite Plate-V
T dT

=-2
dn’ T dn
* To get the solution, we make the transformation
ar . d°’T dT*
R :>_

=T =
dn dn’  dn

* The equation in the new variables can be written as

* The governing equation is

dT+ 3 dT+ 2 d uis a
= -2 T+ v = ;/I ;/I umm;
dn T T 3ariabl}f]:

« Integration gives In(T* )=-n+C =T*= C,e'”/

dT 2 T n 2 n 2
=° = Ce"' = JdT=T-Ty=C, e dy=C, [e" dii
n Tg 0 0
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Error Function
n 2 . .
* The integral { ¢™ gy occurs very frequently in physics

0
* Though not integrable in explicit form, it has been
integrated with series expansion and tables have been
constructed under what is called Error Function

2 «x
erf(x)=—7{ e du erf(x) is tabulated in
\/; 0 in many books
* It turns out that O} e du = \/; x=3 is as good as o

¢ Hence erf(oo):l? erf(0) = 0 Erf(3) = 0.99998

* A complimentary error function
is also defined as

erfc(x) = 1 — erf(x)
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Integration

oo oo oo 21
Consider [ = j‘ j‘e (4y? )dxdy = j‘ fe '(’Z)rdrdﬁ

© 2z dt 2
Putr’=t = — ) Xe”—d@:—n(-e”
0 0 2

2 =

Note that ] = je’xzdx je’yzdy =417, where I, = fe’xzdx
oo oo 0

From above 4]12 =morl, = —\/;

2
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1-D Transient in a Semi-Infinite Plate-VI

. T Jr
 Thesolution T=C, [e" du+T, =C176rf(;7)+TS
0

* The Boundary condition, T(n=00) = T; implies

Jz

T,-=C1ge'ﬂ°0)+Ts ST, =C

1 2 +Tv
2 1
=C, =\T.-T.)—
1 (l s)\/; .99
0
T =0T Jerf (n)+1,
T-T 0
i‘Tl_Ts):e’ff(ﬂ)ZH n 1.82
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1-D Transient in a Semi-Infinite Plate-VII

* Forn =1.82,0=0.99; This implies thatn = 1.82
is for all practical purposes is

n:1.82:ﬁ:1.82 = x =3.64(at)*’
ot)”

* The above numbers can be interpreted in the
following manner

e X >3.64 (at)?> can be considered as infinitely thick

o Similarly for t < x%*(13.25 o), the plate can be
considered infinite

¢ Now we will turn our attention to heat transferred




09:16 29/53
1-D Transient in a Semi-Infinite Plate-VIII
JT dT 1
o \
oT par 1
= "‘a_x = Van|_ (4at)’

¢ We had shown thatf;—T =C, ¢ :>d_T
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The heat transferred into the
bubble can be viewed similar
to semi-infinite plate as
shown

The infinite pool can be
viewed as the semi-infinite
region

Rate of vaporization can be
estimated by using the energy
balance as

30/53

n dn 40
I B S O )
K (4ot ) Iz (mat )*
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R, 4 _, (€-1)
di  hgp, ' mat )0'5hfg,0g
dRB_ k, plplTT o .
0.5
dt  pc, (mot) hfgpg it
c (r-1)
Where Ja=w
hfgpg

Integration of Eq. (1) gives

ot
Ry, =2Ja,|— +c
T

4 2
q 4R, dm, d 4 3 2 AR,
=t D) wR, =4mp,R
h,  dr _ar 37T TP g
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Using BC of Rg =0 at t =0, implies ¢ =0

ot
R, =2Ja,|—
T

. a,
=R, = Ja|—
Tt

More complex analysis gives,

4
=R, = 2\/§Ja1/a—l
T

= \/§Ja\/Z
Tt

Bubble grows as square root of time in the later half,

Though Ry and its time derivative are functions of
time, its product does not depend on time. This was
exploited by Forster and Zuber to arrive at a

correlation for heat transfer
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Pool Boiling Heat Transfer-1

Transition
‘ Nucleate boiling P ;E%lwrﬂ boiling
| | nichromé and Y, ,/ Burnout of

L. 1 i : !
Critical heat flux 7‘\%3 atTTi w"ei,, . Y nichrome wire
i 7 Abserit in power- 2

contr?)\led mode
i
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Pool Boiling Heat Transfer-11

Free convection region ATg, < 5 °C (single phase)

Vapor formed at the free surface

Onset of nucleation AT, ~ 5 °C

Bubbles nucleate, grow and detach from the surface

Increase of wall superheat leads to more vigorous
nucleation and rapid increase in heat transfer

As the superheat is increased, the vapor formation
become vigorous, it blankets the surface and the heat
transfer decreases. This turn around point is called
the Critical Heat Flux or Boiling crisis

s 4
B3
a0 e S S I o
| 7 Cool_mg curve! with g min
Single-phasel &~ pletnim e I Leidenfrost point
0 5 10 30 100 1000
AT, (°C)
Boiling curve at 1 atm
09:16 35/53

Pool Boiling Heat Transfer-111

* As the superheat is increased, more blanketing causes
the heat transfer to drop, till the entire heated surface
is blanketed

* Now the radiation heat transfer also starts playing a
role and eventually, the heat transfer starts increasing
due to increase convection and radiation heat transfer

* The second turnaround point is called Leidenfrost
point or rewetting point.

* The heat transfer beyond this point is called film
boiling
*  We shall briefly look at some details

09:16
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Pool Boiling Heat Transfer-1V
Nucleate Boiling (Wall super heat < 30 °C at 1 atm)
» Isolated bubbles Region 5 < AT, < 10 °C Ve

— Liquid motion is strongly influenced by
nucleation of bubbles at the surface.

vapor 4} Liquid A

— ‘h’rapidly increases with wall superheat bubbles &
— Heat transfer is principally due to contact & '\1\,\4 &
of liquid with the surface (single-phase

. - I
convection) and not due to vaporization. Solid

» Jets and Columns Region (10 < AT, < 30°C at 1 atm)

— Increasing nucleation density causes
bubbles to coalesce to form jets and slugs

— Liquid wetting impaired

— ‘h’starts decreasing with increase in
superheat
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Pool Boiling Heat Transfer-V
* Critical Heat Flux (Wall super heat ~30 °C at 1 atm)
» Typically IMW/m? at 1 atm and increases with pressure

» If the wall pumps heat flux, there is a potential for the
wall to melt as the heat transfer coefficient is very low
here due to vapor blanketing.

* Film Boiling (Wall super heat >120 °C at 1 atm)

» Heat transfer by conduction and
radiation across vapor blanket

» Usually not a preferred mode of 4
cooling but can occur during the ECCS gae—
injection in an uncovered core

09:16
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Pool Boiling Heat Transfer-VI

Transition Boiling ( 30 °C < ATsat < 120 °C at 1 atm)

» Called Unstable film boiling

» Surface conditions oscillate between nucleate and film
boiling.

Boiling Heat Transfer Correlations

» Different models exist and there is no single view on this
aspect.

» We shall just list some correlations for application
purposes
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Models for Nucleate Boiling-I

» Taking cue from turbulent convection heat transfer
promoted by the movement of eddies, nucleate
boiling heat transfer can also be represented by the
classic Dittus-Boelter type equation

=Nu = ARe" Pr"

* To properly account for bubble scales, Rohsenow
used departure bubble diameter as the length scale

20
8(pi-p,) té.ll_

Ref: Von Carey, Liquid-Vapor Phase-Change Phenomenon

=L, 0

09:16
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Models for Nucleate Boiling-II

If one performed an energy balance on the heated
surface, one can write a bubble velocity scale as

”
Ghy, =q =V hy, = q”

4

=V, = o h
g fe
Experiments suggest that subcooling had little
influence on the heat transfer coefficient. Hence the
T, rather than Ty is used as the temperature scale
4

Sh=—t—
T, -T

sat

10
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Models for Nucleate Boiling-111

* As the Reynolds number has to be that of liquid that
cools the surface

GL,
H

—Re, =

* From the previous slide,
4
Gh, =q

* As this mass flux can be equally viewed from either
the liquid or the vapour standpoint, Re, is defined as

P VL,

=Re, =
H
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Models for Nucleate Boiling-1V

hL
Defining Nutobe Nu = —2%  Rohsenow used
1

Nu=ARe"™ Pr'".

Plugging in the expressions for each non-dimensional
number as stated, he arrived at the corrrelation
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Models for Nucleate Boiling-V

» C, is an empirical constant found by experiment and
is tabulated in handbooks. Typically its value is
0.013. Some have recommended value of s=1

* An alternate route has been followed by Forster and

Zuber

* They used scales derived from bubble dynamics
-5 , 025 q” D
D _R pf RB RB Nl/t — scale

scale — “tc 20-/RC RCZ (TW_T‘l) kl

* Similarly, Re was scaled as R P fR 2R
e=——
Hy

q// ~ 1 o 0.5 P . Cp[ATmt 1/r
/ulh’fg (fo )I/r g(pl _pv) : h’fg
* In the above equation,
C co 0.33 1.7
=—, r=0.33, s=1.
sf A
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Models for Nucleate Boiling-VI
By substituting for the bubble Radius and Bubble
velocity as derived earlier, we can write

Re=rm Ja’ Pr’
R from our previous derivation can be written as
2
R = £
(Pea(Ty) - Pea( T1))

Using the above definitions, Forster and Zuber fitted
experimental data into the form

—=Nu = ARe" Pr" A=0.0015,n=0.62, m = 0.33

11
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Models for Nucleate Boiling-VII

The above equation when substituted with
appropriate scales reduce to the following equation

” 0. 75 045 0491 0.79
Pk

AT 24A 0. c
— 000122 sat psat pl

0'0'5/1 024 029 024
fg

ILll pg

w ~ 4
There are other correlations. At times different

correlations are off by as much as 100% and one
needs to be careful when sizing surface area for HX.
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Models for CHF-1

Critical heat flux is the limiting factor in the
operation of heat flux driven systems (nuclear)

Kuteteladze, based on his Russian work gave an
empirical relation

q'=0.131p,h\s(p, - p, Jo )

Based on the work of Zuber, Lienhard, we can
construct the following physics

CHF is governed by Rayleigh-Taylor as well as
Kelvin-Helmholtz Instabilities,

09:16
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Models for CHF-II

Based on inviscid flow assumption, one can show
that Taylor wave length to be

3o
=2 ’ ‘
hr=2m @(pf-pg))

Similarly, one can derive the Helmholtz
wave length to be under the assumption that

US>y, P> Py

2no
Ay = 2 ~

Pty
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Models for CHF-III

Performing energy balance, we get ' , '

. T .,
m, =pgugzd

* Assuming d = A/2, and from the
above two equations, we can write

_16 4

I/tg—

T ph

2 .
j’f q =mghfg
fg

2o T

pgiH

12



Models for CHF-1IV

* Substituting for u, from the last equation into the one
above, assuming Ay= Ay, and substituting the
expression for A, Lienhard derived

¢ =0.149p,h,\s(p, -p, Jo)”

* Earlier using similar arguments and using p/d =/6
Zuber derived,

g =0.131p,h,\s( p, - p, Jo )

* This is same as Kuteteladze’s experimental fit.
* Lienhard’s model is assumed to be a better fit than
Zuber’s. Many more corrections are available
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Models for CHF-V

* For the minimum critical heat flux at the
Leidenfrost’s point, correlations are available

0.25
” g8(p,-p,Jo Berenson,
q =0.09p,h, ———— 1961
SR (pep )

e Several others are available. See Collier and Thome,
Carey, Tong and Tang, etc.
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Film Boiling-I
¢ Similar to Nusselt Condensation, we can derive

1/4

P (pi-p,)h,ex’
kglug( Tw - Tml )

Nu , =0.707

1/4

pg(pl _pv )h/}ggkg3
lug(Tw - Txat )'x

h, =0.707
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*  We can derive the average h as done before

* During film boiling radiation heat transfer
also plays an important role
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Film Boiling-11

_ apg( Tw2 + Tmtz )( Tw + Tmt ) ( )1/4

rad ] ]
+ 1

& &

wall int erface

* Since radiation and convection is present
simultaneously, they get coupled.

» Explicit for of effective heat transfer coefficient can
be obtained by using the following relations

+0.75h For hrad < hcunv

hnverall - hmnvect[nn radiation

13
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Film Boiling-III

For0< h_4/h <1

conv

hmd ]
0.75 +0.25 ——

conv 2 62 + h’i‘id
' h

conv

=h +h

overall conv rad

¢ Convection has to be modified for turbulent
conditions and relations are available




