EN 634 - Nuclear Reactor Thermal Hydraulics and safety

Assignment -5

1. Starting from the basic definition of x, Show that $x = \frac{1}{1 + \frac{\rho_1}{\rho_g} \frac{1 - \alpha}{\alpha} \frac{1}{s}}$. Now rearrange

the above expression to get $s = \frac{x}{1-x} \frac{1-\alpha}{\alpha} \frac{\rho_1}{\rho_g}$ and $\alpha = \frac{xv_g}{xv_g + s(1-x)xv_1}$

- 2. Show that $\beta = \frac{xv_g}{xv_g + (1-x)v_1}$
- 3. Starting from the definition of static density discussed in the class, for s=1, eliminate α by using α -x-s relation and show that $\rho_{2\phi}=1/(v_f(1-x)+v_gx))$
- 4. From the definitions, show that $u_g = G(xv_g + s(1-x)v_1)$ and $u_1 = G\left(\frac{xv_g + s(1-x)v_1}{s}\right)$. Now proceed to show that if s = 1, $u_g = u_1 = u_H = G(xv_g + (1-x)v_1)$. Now express $j_g + j_1$ in terms of G, v_g and v_1 and show that $j_g + j_1 = u_H$, using the definition given above.
- 5. Show that. $\frac{u_H}{\overline{u}_1} = \frac{1-x}{1-\beta}$
- 6. A bubbly mixture flows in a 25.4 mm pipe. The gas flow rate is $5 \times 10^{-4} \text{ m}^3/\text{s}$ and the bubble velocity was determined photographically to be 30 m/s. What is the void fraction? What is the liquid velocity if the liquid flow is 2.5 litres per second.
- 7. 130 kg/hr of air at 25 °C and 1.5 bar(a) flows together with 130 kg/hr of water in a 32 mm diameter pipe. What is the overall volumetric flux j? If the drift flux j_{gf} is 3 m/s, what are the average velocities of the phases.
- 8. Steam-water mixture with 1% quality flows at 1 bar(a) in a tube. The measured void fraction is 80%. What is the slip ratio?
- 9. On a graph of j_2 vs j_1 , for phases with given properties, show the lines of constant j_1 , constant j_2 and constant j_3 . Can a line of constant j_4 be drawn? why?