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• We have already studied one dimensional 

area averaged governing equations for 

mass, momentum and energy for fluid flow 

in heated systems

• We also restricted ourselves to steady 

systems most of the times as the interest 

was to get solutions by simple means either 

analytical/numerical

Recap-I

• Limited solutions for the transient cases 

where the equations could be reduced to an 

ODE

• This was for incompressible single phase 

flow where, the velocity was constant along 

the ducts and the equations could be 

integrated over space and governing 

equations could be simplified

• An applied case of loss of flow could also 

be analysed this way

Recap-II

• We now shift to case where the equations 

cannot be reduced to an ODE 

• First we shall look at single-phase systems 

and then turn to homogeneous two-phase 

flow.

• In both cases we shall obtain solutions using 

the method of characteristics

• This method is commonly used for 

hyperbolic equations

Agenda



2

C
s

B
t

A =
∂

∂
+

∂

∂ )()( φφ
1

MoC-I

• Consider the equation of the type

• In general, the solution of     can be continuous 

or discontinuous 

φ

• Note that discontinuity would imply multiple 

values of derivatives

• Continuity would imply unique values of 

derivatives 
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MoC-II

• If the function is continuous, then chain rule 

will be valid, implying

• We can view equations (1) and (2) as two 

equations dictating the nature of derivatives 
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• We can view equations (1) and (2) as two 

equations dictating the nature of derivatives 
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• The necessary condition for continuity is that 

the determinant of the coefficient matrix 

cannot be zero 
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MoC-III

• For a discontinuity to exist,
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• The locus of the line obtained by integration of 

Eq.(5) is called the characteristic line 

• If B and A are real, then the characteristic 

direction is real and the governing equation 

will be classified as hyperbolic.

MoC-IV
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• The simplified energy equation valid at low 

speed flows,

Would classify as hyperbolic as ds/dt = u 

• We shall now see as to how to get the solution 

of the above equation
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• As we have already seen the method to get the 

velocity previously (say loss flow accident), 

The aim now will be to obtain the temperature 

distribution from the energy equation

MoC-V
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• As stated in the previous slide, the characteristic 

direction is given by 

• For single-phase constant density flow u is 

constant along a constant diameter duct, but 

can change with time

• Let us consider the case for illustration for the 

case in which velocity exponentially decays 

with time following the expression,

MoC-VI
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• Along the characteristic line Eq. (6) can be 

written as
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Note that we have applied chain rule. The 

discontinuities occur across characteristic and 

not along them

• Integration of the characteristic equation 

sketches the characteristic path. In this case it 

turns out to be the path line

MoC-VII
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• We have sketched the loci 

in the figure shown. The s0

and t0 are the initial 

location and time, while s 

and t are any arbitrary 

space and time

• For obtaining the solution, we need to know whether 

the particle was inside or outside the domain when the 

transient started

MoC-VIII

• The characteristic originating from the origin 

decides that. All that are on right of it were within 

and those to the left came later.

• For any given s,t, we find s0 for t0 = 0.  This is done by 

using Eq. (10). 
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• If s0 > 0, then the characteristic originates from right. 

However, if s < 0, then it originates from left
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• The initial condition in general can be written as

MoC-IX

• The boundary condition can be written as

• The solution for the points that are to the right of 

characteristic from origin is
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• To obtain the solution, we need to specify the initial 

and boundary conditions for the governing equation 

(Eq. (6))
• The time t0 for these are not zero and needs to be 

found out. This is found from Eq. (10) by substituting 

s0 = 0

MoC-X

• For points that are on the left, we shall proceed as 

follows 
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• The solution for T can now be found from
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Solution for Homogeneous Flow

• We shall restrict to the homogeneous model 

• Here again, if we invoke incompressibility of each 

phase, very simple and elegant equations are 

obtained

• These are valid for cases in which pressure is high, 

but pressure changes are slow such as for station 

transients

• The final equation is amenable to be solved by 

MoC
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• The energy balance can be written as

• The mass balance can be expanded as 

Governing Equations-I
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derivative and rewrite the above two equations as
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• The further analysis shall assume that ρf , ρg, hf and hg

are assumed constants,
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• Eq. (17) can now be rewritten in terms of specific 

volume as  
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• Eq. (18) can be rewritten as  
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• Eqs. (19) and (20) leads to  
Ah

qv

s

u

fg

wfgm
′

=
∂

∂

Governing Equations-II
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• Eq. (21) leads to an important  conclusion that the 

instantaneous variation of the homogeneous velocity is 

dictated by linear heat rate just as in steady flow.

Governing Equations-III

• If linear heat rate is constant, then the velocity 

variation shall be linear

• Restricting the case to constant linear heat rate for 

simplicity, we can write

bsau
m

+=

• The characteristic direction shall be given by

0

0

atat ee
bas

bas
bsa

dt

ds
−=

+

+
⇒+=

22

• Rest of the concepts are similar. We need to divide the 

region on either side of the characteristic from the 

origin following the same procedure

Governing Equations-IV

• Similarly, the energy equation can be integrated along 

the characteristic to give
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• The value of s0 and t0 are obtained very similarly by 

manipulating the characteristic equation


