EN -644 - Two-Phase Flow and Heat Transfer

Assignment -1

1. Starting from the basic definition of x, Show that $x = \frac{1}{1 + \frac{\rho_1}{\rho_g} \frac{1 - \alpha}{\alpha} \frac{1}{s}}$. Now rearrange the

above expression to get $s = \frac{x}{1-x} \frac{1-\alpha}{\alpha} \frac{\rho_1}{\rho_g}$ and $\alpha = \frac{xv_g}{xv_g + s(1-x)xv_1}$

- 2. Show that $\beta = \frac{xv_g}{xv_g + (1-x)v_1}$
- 3. Show that $\frac{v_H}{v_1} = \frac{1-x}{1-\beta}$.
- 4. From the definitions, show that $u_g = G(xv_g + s(1-x)v_1)$ and $u_1 = G(\frac{xv_g + s(1-x)v_1}{s})$.

Now proceed to show that if s=1, $u_g=u_l=u_H=G(xv_g+(1-x)v_l)$. Now express j_g+j_l in terms of G, v_g and v_l and show that $j_g+j_l=u_H$, using the definition given above. Note that for steady incompressible flow (ρ_g and ρ_l independent of position) of a mixture of gas and liquid, j_g+j_l is constant at every cross section and hence the volume flux at any cross section is equal to the homogeneous velocity, even if the flow has slip.

- 5. A bubbly mixture flows in a 25.4 mm pipe. The gas flow rate is 5 X 10⁻⁴ m³/s and the bubble velocity was determined photographically to be 30 m/s. What is the void fraction? What is the liquid velocity if the liquid flow is 2.5 litres per second.
- 6. 130 kg/hr of air at 25 °C and 1.5 bar(a) flows together with 130 kg/hr of water at the same temperature in a 32 mm diameter pipe. What is the overall volumetric flux j? If the drift flux jgf is 3 m/s, what are the average velocities of the phases.
- 7. Steam-water mixture with 1% quality flows at 1 bar(a) in a tube. The measured void fraction is 80%. What is the slip ratio?
- 8. On a graph of j_2 vs j_1 , show lines of constant α , if
 - (a) $v_1/v_2 = constant$
 - (b) $v_{12} = constant$
 - (c) $j_{12} = constant$
 - (d) $j_{12} = k\alpha(1-\alpha)^n$
- 9. What value of α corresponds to a close-packed array of spheres.
- 10. Water at 70 bar(a) undergoes phase change in a tube. The slip is estimated to be 1.2. Plot the variation of α with x, for 0 < x < 1. Repeat the same if the system pressure is 2 bar (a) and plot it in the same figure. Discuss your result.