Assignment 9

- Heptane (C₇ H ₁₆) is burnt with 50% excess air. Determine (a) Stiochiometric air- fuel ratio, (b) actual air-fuel ratio, (c) Oxygen present in products, by volume and by mass, and (d) calorific value. (Ans.: (a) 15.17 kg air/kg fuel, (b) 22.76 kg air/kg fuel, (c) 0.067 and 0.074, (d) 46.74 MJ/kg fuel)
- 2. Coal having the gravimetric composition of C=74.4%, H₂=12%, O₂=2%, rest of ash is burnt with 180% theoretical air. Compute (a) calorific value (b) Stiochiometric air-fuel ratio, (c) actual air-fuel ratio, and (d) exhaust gas composition by mass on dry basis assuming complete combustion. (Ans.: (a) 38.79 MJ/kg fuel, (b) 12.60 kg air/kg fuel, (c) 22.69 kg air/ kg fuel (d) CO₂=12.1%, N₂=77.5%, O₂=10.4)%
- 3. A gas sample analysed by Orsat's apparatus gave the following percentage values: $CO_2 = 7.20$, CO = 1.00, $O_2 = 10.00$, $N_2 = 81.8$. (a) Express this volumetric composition on mass basis, (b) Assuming that the fuel is a hydrocarbon, find its approximate formula and (c) Estimate the calorific value of the fuel. (Ans.: (a) $CO_2 = 10.7$, CO = 9.0, $O_2 = 10.8$, $N_2 = 77.6$ (b)CH₂ or $C_2H_4(c)$ 45.08 MJ/kg fuel)
- 4. A sample of coal has the following gravimetric composition: C = 87%, $H_2 = 4\%$, ash = 9%. Find (a) stiochimetric air-fuel ratio assuming complete combustion without excess air, determine (b) gravimetric and (c) volumetric composition of the products, and (d) calculate the calorific value. (Ans.: (a) 11.38 kg air / kg fuel, (b) $CO_2=26.0\%$, $N_2=71.1\%$, $H_2O=2.9\%$ (mass basis), (c) $CO_2=18.0\%$, $N_2=77.0\%$, $H_2O=5.0\%$ (mole basis), (d) 33.32 MJ/ kg fuel)
- 5. During the burning of coal in Ex. 4, the dry flue gas indicates a CO_2 content of 12.6%, using ORSAT's apparatus. Determine the excess air factor. (Ans.: 48.3%)
- 6. Producer gas having the volumetric percentage composition of $H_2= 14$, $CH_4= 3$, CO= 24, $CO_2= 6$, $O_2=2$, $N_2= 50.3$, (rest moisture) is burnt in a process boiler. The volumetric percentage composition of the dry flue gasses determined by Orsat's apparatus is $CO_2=15$, $O_2=4.7$, and $N_2= 80.3$. What is the excess air factor. (Ans. 2.0)
- 7. CO is burnt in adiabatically in a steady flow at atmospheric pressure with 100% excess air. The CO is supplied to the burner at 150 °C and the air at 40 °C. The standard enthalpy of the reaction at 1 atm., 25 °C, is -283177 X 10⁶ J/k-mol of CO. Calculate the temperature of the combustion products. Use the following mean specific heats at constant pressure. CO-1038 J/kg-K, O₂-1120 J/kg-K, N₂-1171 J/kg-K, CO₂-1185 J/kg-K and air-1000 J/kg-K.
- 8. A mixture having a volumetric composition of $CO_2 = 0.1$, CO = 0.4 and air 0.5, is contained in a rigid vessel at a temperature of 0°C When the mixture is exploded by a spark, estimate the gravimetric composition of the products, and (b) the temperature they would reach, assuming that no dissociation takes place and the process is adiabatic. Take the meat c_v for the gases are as follows. CO-888 J/kg-K, O₂-830 J/kg-K, N₂-870 J/kg-K, and CO₂-1045 J/kg-K. [Ans (a) $CO_2 = 0.4543$, CO = 0.1773, N₂ = 0.3684, (b) 2069 °C]
- 9. Ethane (C₂H₆), when burnt with oxygen, at constant pressure has the enthalpy of the reaction at 25 °C equal to -47590 kJ/kg. (a) Find the enthalpy of reaction at 540 °C, if the mean c_p values between 25 °C to 540 °C (in kJ/kg-K) are C₂H₆ = 2.800, O₂ = 0.989, CO₂ = 1.049, H₂O (vap) = 1.987, N₂ = 1.066. (b) Calculate the heat transferred when 0.2 kg of ethane is burnt at constant pressure in a cylinder containing 4 kg of dry air, if the temperature of the reactants and products are 40 °C and 540 °C respectively and the mean c_p values in the range 25 °C to 40 °C (in kJ/kg-K)are: C₂H₆ = 1.788, O₂ = 0.919, N₂ = 1.040. [Ans -47510 kJ/kg of C₂H₆, -7120 kJ]