Assignment 9

1. Heptane $\left(\mathrm{C}_{7} \mathrm{H}_{16}\right)$ is burnt with 50% excess air. Determine (a) Stiochiometric air- fuel ratio, (b) actual air-fuel ratio, (c) Oxygen present in products, by volume and by mass, and (d) calorific value. (Ans.: (a) 15.17 kg air $/ \mathrm{kg}$ fuel, (b) 22.76 kg air $/ \mathrm{kg}$ fuel, (c) 0.067 and 0.074 , (d) 46.74 $\mathrm{MJ} / \mathrm{kg}$ fuel)
2. Coal having the gravimetric composition of $\mathrm{C}=74.4 \%, \mathrm{H}_{2}=12 \%, \mathrm{O}_{2}=2 \%$, rest of ash is burnt with 180% theoretical air. Compute (a) calorific value (b) Stiochiometric air-fuel ratio, (c) actual air-fuel ratio, and (d) exhaust gas composition by mass on dry basis assuming complete combustion. (Ans.: (a) $38.79 \mathrm{MJ} / \mathrm{kg}$ fuel, (b) 12.60 kg air/kg fuel, (c) $22.69 \mathrm{~kg} \mathrm{air/} \mathrm{~kg}$ fuel (d) $\left.\mathrm{CO}_{2}=12.1 \%, \mathrm{~N}_{2}=77.5 \%, \mathrm{O}_{2}=10.4\right) \%$
3. A gas sample analysed by Orsat's apparatus gave the following percentage values: $\mathrm{CO}_{2}=7.20$, $\mathrm{CO}=1.00, \mathrm{O}_{2}=10.00, \mathrm{~N}_{2}=81.8$. (a) Express this volumetric composition on mass basis, (b) Assuming that the fuel is a hydrocarbon, find its approximate formula and (c) Estimate the calorific value of the fuel. (Ans.: (a) $\mathrm{CO}_{2}=10.7, \mathrm{CO}=9.0, \mathrm{O}_{2}=10.8, \mathrm{~N}_{2}=77.6$ (b) CH_{2} or $\mathrm{C}_{2} \mathrm{H}_{4}$ (c) $45.08 \mathrm{MJ} / \mathrm{kg}$ fuel)
4. A sample of coal has the following gravimetric composition: $\mathrm{C}=87 \%, \mathrm{H}_{2}=4 \%$, ash $=9 \%$. Find (a) stiochimetric air-fuel ratio assuming complete combustion without excess air, determine (b) gravimetric and (c) volumetric composition of the products, and (d) calculate the calorific value. (Ans.: (a) 11.38 kg air / kg fuel, (b) $\mathrm{CO}_{2}=26.0 \%, \mathrm{~N}_{2}=71.1 \%, \mathrm{H}_{2} \mathrm{O}=2.9 \%$ (mass basis), (c) $\mathrm{CO}_{2}=18.0 \%, \mathrm{~N}_{2}=77.0 \%, \mathrm{H}_{2} \mathrm{O}=5.0 \%$ (mole basis), (d) $33.32 \mathrm{MJ} / \mathrm{kg}$ fuel)
5. During the burning of coal in Ex. 4, the dry flue gas indicates a CO_{2} content of 12.6%, using ORSAT's apparatus. Determine the excess air factor. (Ans.: 48.3\%)
6. Producer gas having the volumetric percentage composition of $\mathrm{H}_{2}=14, \mathrm{CH}_{4}=3, \mathrm{CO}=24, \mathrm{CO}_{2}=$ $6, \mathrm{O}_{2}=2, \mathrm{~N}_{2}=50.3$, (rest moisture) is burnt in a process boiler. The volumetric percentage composition of the dry flue gasses determined by Orsat's apparatus is $\mathrm{CO}_{2}=15, \mathrm{O}_{2}=4.7$, and $\mathrm{N}_{2}=80.3$. What is the excess air factor. (Ans. 2.0)
7. CO is burnt in adiabatically in a steady flow at atmospheric pressure with 100% excess air. The CO is supplied to the burner at $150{ }^{\circ} \mathrm{C}$ and the air at $40^{\circ} \mathrm{C}$. The standard enthalpy of the reaction at 1 atm ., $25^{\circ} \mathrm{C}$, is $-283177 \times 10^{6} \mathrm{~J} / \mathrm{k}-\mathrm{mol}$ of CO. Calculate the temperature of the combustion products. Use the following mean specific heats at constant pressure. CO-1038 $\mathrm{J} / \mathrm{kg}-\mathrm{K}, \mathrm{O}_{2}-1120 \mathrm{~J} / \mathrm{kg}-\mathrm{K}, \mathrm{N}_{2}-1171 \mathrm{~J} / \mathrm{kg}-\mathrm{K}, \mathrm{CO}_{2}-1185 \mathrm{~J} / \mathrm{kg}-\mathrm{K}$ and air-1000 J/kg-K.
8. A mixture having a volumetric composition of $\mathrm{CO}_{2}=0.1, \mathrm{CO}=0.4$ and air 0.5 , is contained in a rigid vessel at a temperature of $0^{\circ} \mathrm{C}$ When the mixture is exploded by a spark, estimate the gravimetric composition of the products, and (b) the temperature they would reach, assuming that no dissociation takes place and the process is adiabatic. Take the meat c_{v} for the gases are as follows. CO-888 J/kg-K, $\mathrm{O}_{2}-830 \mathrm{~J} / \mathrm{kg}-\mathrm{K}, \mathrm{N}_{2}-870 \mathrm{~J} / \mathrm{kg}-\mathrm{K}$, and $\mathrm{CO}_{2}-1045 \mathrm{~J} / \mathrm{kg}-\mathrm{K}$.
[Ans (a) $\mathrm{CO}_{2}=0.4543, \mathrm{CO}=0.1773, \mathrm{~N}_{2}=0.3684$, (b) $2069^{\circ} \mathrm{C}$]
9. Ethane $\left(\mathrm{C}_{2} \mathrm{H}_{6}\right)$, when burnt with oxygen, at constant pressure has the enthalpy of the reaction at $25^{\circ} \mathrm{C}$ equal to $-47590 \mathrm{~kJ} / \mathrm{kg}$. (a) Find the enthalpy of reaction at $540^{\circ} \mathrm{C}$, if the mean c_{p} values between $25^{\circ} \mathrm{C}$ to $540{ }^{\circ} \mathrm{C}($ in $\mathrm{kJ} / \mathrm{kg}-\mathrm{K})$ are $\mathrm{C}_{2} \mathrm{H}_{6}=2.800, \mathrm{O}_{2}=0.989, \mathrm{CO}_{2}=1.049, \mathrm{H}_{2} \mathrm{O}$ (vap) $=1.987, \mathrm{~N}_{2}=1.066$. (b) Calculate the heat transferred when 0.2 kg of ethane is burnt at constant pressure in a cylinder containing 4 kg of dry air, if the temperature of the reactants and products are $40^{\circ} \mathrm{C}$ and $540{ }^{\circ} \mathrm{C}$ respectively and the mean c_{p} values in the range $25^{\circ} \mathrm{C}$ to 40 ${ }^{\circ} \mathrm{C}($ in $\mathrm{kJ} / \mathrm{kg}-\mathrm{K})$ are: $\mathrm{C}_{2} \mathrm{H}_{6}=1.788, \mathrm{O}_{2}=0.919, \mathrm{~N}_{2}=1.040$. [Ans $-47510 \mathrm{~kJ} / \mathrm{kg}$ of $\mathrm{C}_{2} \mathrm{H}_{6}$, $7120 \mathrm{~kJ}]$
