

2/14

Review of Lecture 9

- Understood the concept of an engine, heat pump and refrigerator.
- Understood the Clausius Statement and Kelvin Planck Statement, and showed that they are equivalent.
- Now we shall look at reversibility and understand that reversible engines, heat pumps and refrigerators perform better than their irreversible counter parts.
- Then we shall move towards definition of thermodynamic temperature scale and show that it is equivalent to Kelvin scale

4/14

Reversible Process-II

- Quasitatic adiabatic compression/expansion, Isothermal heat addition/rejection are reversible process
- Causes of Irreversibility
 - Lack of Equilibrium
 - Heat transfer with finite temperature difference
 - Free expansion (mixing of gases with $p_1 > p_2$)
 - Dissipative Work
 - Friction in system
 - Friction in surroundings
- In all the irreversible processes, either there is dissipative work or opportunity to extract work is lost

^{10/14}Themodynamic Temperature Scale-II

• Thus we can use heat engine to construct a thermometer with supplied or rejected as a thermometric property (work remaining the same)

$$\theta = 273.16 \frac{Q}{Q_{\text{Ref}}}$$

- We have seen that isothermal heat transfer and frictionless adiabatic process as reversible
- An engine that operates on this cycle is called a Carnot Engine and we shall use this to relate the thermodynamic scale to Absolute Gas Scale (Kelvin Scale)