ME 209

Basic Thermodynamics
Property Relations

Kannan Iyer
Kiyer@me.iitb.ac.in

Concept of Exact Differential-I

- Consider a property surface. Let it be a p,v,T surface
- Let point 1 and 2 be close to each other and the point 1-2 can be reached by infinite number of paths. If we look at $d v=V_{2}-V_{1}$, it should be independent of the path

- Let 1-A and B-2 be isotherms and 1-B and A-2 be isobars

$$
\mathrm{dv}_{1-2}=\left.\frac{\partial \mathrm{v}}{\partial \mathrm{p}}\right|_{\mathrm{T} 1} \mathrm{dp}+\left.\frac{\partial \mathrm{v}}{\partial \mathrm{~T}}\right|_{\mathrm{p} 2} \mathrm{dT}=\left.\frac{\partial \mathrm{v}}{\partial \mathrm{~T}}\right|_{\mathrm{p} 1} \mathrm{dT}+\left.\frac{\partial \mathrm{v}}{\partial \mathrm{p}}\right|_{\mathrm{T} 2} \mathrm{dp}
$$

Concept of Exact Differential-II

$$
\begin{aligned}
& \mathrm{dv}_{1-2}=\left.\frac{\partial \mathrm{v}}{\partial \mathrm{p}}\right|_{\mathrm{T} 1} \mathrm{dp}+\left.\frac{\partial \mathrm{v}}{\partial \mathrm{~T}}\right|_{\mathrm{p} 2} \mathrm{dT}=\left.\frac{\partial \mathrm{v}}{\partial \mathrm{~T}}\right|_{\mathrm{p} 1} \mathrm{dT}+\left.\frac{\partial \mathrm{v}}{\partial \mathrm{p}}\right|_{\mathrm{T} 2} \mathrm{dp} \\
& \left(\left.\frac{\partial \mathrm{v}}{}\right|_{\mathrm{T} 1} \mathrm{dp}+\left.\frac{\partial \mathrm{v}}{\partial \mathrm{~T}}\right|_{\mathrm{p} 2} \mathrm{dT}\right)-\left(\left.\frac{\partial \mathrm{v}}{\partial \mathrm{~T}}\right|_{\mathrm{p} 1} \mathrm{dT}+\left.\frac{\partial \mathrm{v}}{\partial \mathrm{p}}\right|_{\mathrm{T} 2} \mathrm{dp}\right)=0 \\
& \Rightarrow\left(\left.\frac{\partial \mathrm{v}}{\partial \mathrm{p}}\right|_{\mathrm{T} 2}-\left.\frac{\partial \mathrm{v}}{\partial \mathrm{p}}\right|_{\mathrm{T} 1}\right) \mathrm{dp}=\left(\left.\frac{\partial \mathrm{v}}{\partial \mathrm{~T}}\right|_{\mathrm{p} 2}-\left.\frac{\partial \mathrm{v}}{\partial \mathrm{~T}}\right|_{\mathrm{p} 1}\right) \mathrm{dT} \\
& \\
& \Rightarrow \frac{\left(\left.\frac{\partial \mathrm{v}}{\partial \mathrm{p}}\right|_{\mathrm{T} 2}-\left.\frac{\partial \mathrm{v}}{\partial \mathrm{p}}\right|_{\mathrm{T} 1}\right)}{\mathrm{dT}}=\frac{\left(\left.\frac{\partial \mathrm{v}}{\partial \mathrm{~T}}\right|_{\mathrm{p} 2}-\left.\frac{\partial \mathrm{v}}{\partial \mathrm{~T}}\right|_{\mathrm{p} 1}\right)}{\mathrm{dp}}
\end{aligned}
$$

Concept of Exact Differential-III

- As the points are close by, we can write the previous equation as

$$
\begin{gathered}
\Rightarrow \frac{\partial}{\partial \mathrm{T}}\left(\left.\frac{\partial \mathrm{v}}{\partial \mathrm{p}}\right|_{\mathrm{T}}\right)_{\mathrm{p}}=\frac{\partial}{\partial \mathrm{p}}\left(\left.\frac{\partial \mathrm{v}}{\partial \mathrm{~T}}\right|_{\mathrm{p}}\right)_{\mathrm{T}} \\
\Rightarrow \frac{\partial^{2} \mathrm{v}}{\partial \mathrm{~T} \partial \mathrm{p}}=\frac{\partial^{2} \mathrm{v}}{\partial \mathrm{p} \partial \mathrm{~T}}
\end{gathered}
$$

- The value of a mixed differential is independent of the order of differentiation
- The result is a consequence of assuming dv is independent of direction. Those differentials that satisfy this property are called exact differentials

Concept of Exact Differential-IV

- Every property change is an exact differential and Every exact differential represents change of a property
- The whole thing can be generalised as, given three variables x, y and z and they have a relation of the form

$$
\mathrm{dz}=\mathrm{M}(\mathrm{x}, \mathrm{y}) \mathrm{dx}+\mathrm{N}(\mathrm{x}, \mathrm{y}) \mathrm{dy}
$$

then the differential dz is exact, if

$$
\Rightarrow \frac{\partial \mathrm{M}}{\partial \mathrm{y}}=\frac{\partial \mathrm{N}}{\partial \mathrm{x}}
$$

- In thermodynamics, knowing that properties are exact, we shall equate the cross derivatives

Rules of Partial Derivatives-II

- Collecting the coefficients of dx and dz, we can write

$$
\mathrm{dx}\left(1-\left.\left.\frac{\partial \mathrm{x}}{\partial \mathrm{y}}\right|_{\mathrm{z}} \frac{\partial \mathrm{y}}{\partial \mathrm{x}}\right|_{\mathrm{z}}\right)=\left(\left.\left.\frac{\partial \mathrm{x}}{\partial \mathrm{y}}\right|_{\mathrm{z}} \frac{\partial \mathrm{y}}{\partial \mathrm{z}}\right|_{\mathrm{x}}+\left.\frac{\partial \mathrm{x}}{\partial \mathrm{z}}\right|_{\mathrm{y}}\right) \mathrm{dz}
$$

- Now if we go to two neighboring states such that $\mathrm{dz}=0$ and $d x \neq 0$, then it is necessary to have

$$
1-\left.\left.\frac{\partial x}{\partial y}\right|_{z} \frac{\partial y}{\partial x}\right|_{z}=0 \quad \text { Or }\left.\left.\frac{\partial x}{\partial y}\right|_{z} \frac{\partial y}{\partial x}\right|_{z}=1 \quad \text { Or }\left.\frac{\partial x}{\partial y}\right|_{z}=\left.\frac{1}{\frac{\partial y}{\partial x}}\right|_{z}
$$

- We can call the above as Reciprocal Rule

Rules of Partial Derivatives-I

- Now let us look at the relation between partial derivatives

$$
d x=\left.\frac{\partial x}{\partial y}\right|_{z} d y+\left.\frac{\partial x}{\partial z}\right|_{y} d z
$$

- Similarly, we can write

$$
d y=\left.\frac{\partial y}{\partial x}\right|_{z} d x+\left.\frac{\partial y}{\partial z}\right|_{x} d z
$$

- Substituting the expression for dy in second equation into the first equation, we get

$$
\mathrm{dx}=\left.\frac{\partial \mathrm{x}}{\partial \mathrm{y}}\right|_{\mathrm{z}}\left(\left.\frac{\partial \mathrm{y}}{\partial \mathrm{x}}\right|_{\mathrm{z}} \mathrm{dx}+\left.\frac{\partial \mathrm{y}}{\partial \mathrm{z}}\right|_{\mathrm{x}} \mathrm{dz}\right)+\left.\frac{\partial \mathrm{x}}{\partial \mathrm{z}}\right|_{\mathrm{y}} \mathrm{dz}
$$

Rules of Partial Derivatives-III

- Now if we go to two neighboring states such that $\mathrm{dx}=0$ and $\mathrm{dz} \neq 0$, then, we can write,

$$
\left.\left.\frac{\partial \mathrm{x}}{\partial \mathrm{y}}\right|_{\mathrm{z}} \frac{\partial \mathrm{y}}{\partial \mathrm{z}}\right|_{\mathrm{x}}=-\left.\frac{\partial \mathrm{x}}{\partial \mathrm{z}}\right|_{\mathrm{y}}
$$

- Now applying the reciprocal rule, we can write

$$
\left.\left.\frac{\partial \mathrm{x}}{\partial \mathrm{y}}\right|_{\mathrm{z}} \frac{\partial \mathrm{y}}{\partial \mathrm{z}}\right|_{\mathrm{x}}=\left.\frac{-1}{\frac{\partial \mathrm{z}}{\partial \mathrm{x}}}\right|_{\mathrm{y}} \quad \text { Or }\left.\left.\left.\frac{\partial \mathrm{x}}{\partial \mathrm{y}}\right|_{\mathrm{z}} \frac{\partial \mathrm{y}}{\partial \mathrm{z}}\right|_{\mathrm{x}} \frac{\partial \mathrm{z}}{\partial \mathrm{x}}\right|_{\mathrm{y}}=-1
$$

- The above can be called as Cyclic Rule

Thermodynamic Functions-I

- Having laid the foundation for deriving property relations, we shall now go on to define two new thermodynamic functions called Helmholtz and Gibbs functions
- The Helmholtz function A and Gibbs function G are defined as

$$
\mathrm{A}=\mathrm{U}-\mathrm{TS} \quad \mathrm{G}=\mathrm{H}-\mathrm{TS}
$$

- Their intensive counterparts are \mathbf{a} and \mathbf{g}

$$
\mathrm{a}=\mathrm{u}-\mathrm{Ts} \quad \mathrm{~g}=\mathrm{h}-\mathrm{Ts}
$$

- Now we shall begin manipulating these functions

Thermodynamic Functions-II

- Let us begin with the two Tds relations that we have derived earlier

$$
\mathrm{du}=\mathrm{Tds}-\mathrm{pdv} \quad(1 \quad \mathrm{dh}=\mathrm{Tds}+\mathrm{vdp}
$$

- Differentiating the two functions defined in previous slide, we can write

$$
\mathrm{da}=\mathrm{du}-\mathrm{Tds}-\mathrm{sdT} \text { (3) } \quad \mathrm{dg}=\mathrm{dh}-\mathrm{Tds}-\mathrm{sdT} \text { (4) }
$$

- Substituting for du-Tds from Eq. (1) in Eq. (3) and similarly substituting for dh-Tds from Eq. (2) in Eq. (4), we get

$$
\begin{equation*}
\mathrm{da}=-\mathrm{pdv}-\mathrm{sdT} \text { (5) } \mathrm{dg}=\mathrm{vdp}-\mathrm{sdT} \tag{6}
\end{equation*}
$$

Thermodynamic Functions-IV

- From Eq. (5) $d a=-p d v-s d T$
- We can write, $\left.\frac{\partial \mathrm{a}}{\partial \mathrm{v}}\right|_{\mathrm{T}}=-\mathrm{p},\left.\quad \frac{\partial \mathrm{a}}{\partial \mathrm{T}}\right|_{\mathrm{v}}=-\mathrm{s}$
- From Eq. (6) dg = vdp - sdT
- We can write, $\left.\quad \frac{\partial g}{\partial \mathrm{p}}\right|_{\mathrm{T}}=\mathrm{v},\left.\quad \frac{\partial \mathrm{g}}{\partial \mathrm{T}}\right|_{\mathrm{p}}=-\mathrm{s}$
- Thus we have obtained the basic thermodynamic properties, $\mathrm{p}, \mathrm{v}, \mathrm{T}$ and s have been defined as the derivative of u, h, a and g. Due to this aspect, u, h, a and g are also called thermodynamic potentials

${ }^{1315} \quad$ Maxwell Relations

- Now we shall use the exact differential rule and relate the derivatives

$$
\begin{array}{ll}
d \mathrm{c}=\mathrm{Tds}-\mathrm{pdv} & \left.\Rightarrow \frac{\partial \mathrm{~T}}{\partial \mathrm{v}}\right|_{\mathrm{s}}=-\left.\frac{\partial \mathrm{p}}{\partial \mathrm{~s}}\right|_{\mathrm{v}} \\
d \mathrm{c}=\mathrm{Tds}+\mathrm{vdp} & \left.\Rightarrow \frac{\partial \mathrm{~T}}{\partial \mathrm{p}}\right|_{\mathrm{s}}=\left.\frac{\partial \mathrm{v}}{\partial \mathrm{~s}}\right|_{\mathrm{p}} \\
\mathrm{da}=-\mathrm{pdv}-\mathrm{sdT} & \left.\Rightarrow \frac{\partial \mathrm{p}}{\partial \mathrm{~T}}\right|_{\mathrm{v}}=\left.\frac{\partial \mathrm{s}}{\partial \mathrm{v}}\right|_{\mathrm{T}} \\
\mathrm{dg}=\mathrm{vdp}-\mathrm{sdT} & \left.\Rightarrow \frac{\partial \mathrm{v}}{\partial \mathrm{~T}}\right|_{\mathrm{p}}=-\left.\frac{\partial \mathrm{s}}{\partial \mathrm{p}}\right|_{\mathrm{T}}
\end{array}
$$

- The relations in Eqs. (11) - (14) are called Maxwell Relations

Auxiliary Relations-I

- Now we shall equate T is Eqs. (7) and (8) to give

$$
\begin{equation*}
\left.\Rightarrow \frac{\partial \mathrm{u}}{\partial \mathrm{~s}}\right|_{\mathrm{v}}=\left.\frac{\partial \mathrm{h}}{\partial \mathrm{~s}}\right|_{\mathrm{p}} \tag{15}
\end{equation*}
$$

- Similarly equating -p is Eqs. (7) and (9) to give

$$
\begin{equation*}
\left.\Rightarrow \frac{\partial \mathrm{u}}{\partial \mathrm{v}}\right|_{\mathrm{s}}=-\left.\frac{\partial \mathrm{a}}{\partial \mathrm{v}}\right|_{\mathrm{T}} \tag{16}
\end{equation*}
$$

- Equating v is Eqs. (8) and (10) to give

$$
\left.\Rightarrow \frac{\partial \mathrm{h}}{\partial \mathrm{p}}\right|_{\mathrm{S}}=\left.\frac{\partial \mathrm{g}}{\partial \mathrm{p}}\right|_{\mathrm{T}}
$$

Auxiliary Relations-II

- Equating -s is Eqs. (8) and (10) to give

$$
\begin{equation*}
\left.\Rightarrow \frac{\partial \mathrm{a}}{\partial \mathrm{~T}}\right|_{\mathrm{v}}=\left.\frac{\partial \mathrm{g}}{\partial \mathrm{~T}}\right|_{\mathrm{p}} \tag{18}
\end{equation*}
$$

- The fundamental question that arises is what is the use of all these relations?
- They provide means to construct property tables from the measured p, v and T data and some additional measurements
- The aim is to measure minimum quantities and construct property data

