ME 209

Basic Thermodynamics Property Relations

Kannan Iyer Kiyer@me.iitb.ac.in

Department of Mechanical Engineering Indian Institute of Technology, Bombay

2/15

Concept of Exact Differential-I

- Consider a property surface. Let it be a p,v,T surface
- Let point 1 and 2 be close to each other and the point 1-2 can be reached by infinite number of paths. If we look at dv = V₂-V₁, it should be independent of the path

• Let 1-A and B-2 be isotherms and 1-B and A-2 be isobars

$$dv_{1-2} = \frac{\partial v}{\partial p}\bigg|_{T_1} dp + \frac{\partial v}{\partial T}\bigg|_{p_2} dT = \frac{\partial v}{\partial T}\bigg|_{p_1} dT + \frac{\partial v}{\partial p}\bigg|_{T_2} dp$$
Path 1-A-2
Path 1-B-2

3/15

Concept of Exact Differential-II

$$\begin{split} dv_{1-2} &= \frac{\partial v}{\partial p}\bigg|_{T1} dp + \frac{\partial v}{\partial T}\bigg|_{p2} dT = \frac{\partial v}{\partial T}\bigg|_{p1} dT + \frac{\partial v}{\partial p}\bigg|_{T2} dp \\ &\left(\frac{\partial v}{\partial p}\bigg|_{T1} dp + \frac{\partial v}{\partial T}\bigg|_{p2} dT\right) - \left(\frac{\partial v}{\partial T}\bigg|_{p1} dT + \frac{\partial v}{\partial p}\bigg|_{T2} dp\right) = 0 \\ &\Rightarrow \left(\frac{\partial v}{\partial p}\bigg|_{T2} - \frac{\partial v}{\partial p}\bigg|_{T1}\right) dp = \left(\frac{\partial v}{\partial T}\bigg|_{p2} - \frac{\partial v}{\partial T}\bigg|_{p1}\right) dT \\ &\Rightarrow \frac{\left(\frac{\partial v}{\partial p}\bigg|_{T2} - \frac{\partial v}{\partial p}\bigg|_{T1}\right)}{dT} = \frac{\left(\frac{\partial v}{\partial T}\bigg|_{p2} - \frac{\partial v}{\partial T}\bigg|_{p1}\right)}{dp} \end{split}$$

4/15

Concept of Exact Differential-III

• As the points are close by, we can write the previous equation as

$$\Rightarrow \frac{\partial}{\partial T} \left(\frac{\partial v}{\partial p} \Big|_{T} \right)_{p} = \frac{\partial}{\partial p} \left(\frac{\partial v}{\partial T} \Big|_{p} \right)_{T}$$
$$\Rightarrow \frac{\partial^{2} v}{\partial T \partial p} = \frac{\partial^{2} v}{\partial p \partial T}$$

- The value of a mixed differential is independent of the order of differentiation
- The result is a consequence of assuming dv is independent of direction. Those differentials that satisfy this property are called exact differentials

Concept of Exact Differential-IV

- Every property change is an exact differential and Every exact differential represents change of a property
- The whole thing can be generalised as, given three variables x, y and z and they have a relation of the form

$$dz = M(x, y)dx + N(x, y)dy$$

then the differential dz is exact, if

$$\Rightarrow \frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$$

• In thermodynamics, knowing that properties are exact, we shall equate the cross derivatives

7/15

Rules of Partial Derivatives-II

• Collecting the coefficients of dx and dz, we can write

$$dx \left(1 - \frac{\partial x}{\partial y} \bigg|_{z} \frac{\partial y}{\partial x} \bigg|_{z} \right) = \left(\frac{\partial x}{\partial y} \bigg|_{z} \frac{\partial y}{\partial z} \bigg|_{x} + \frac{\partial x}{\partial z} \bigg|_{y} \right) dz$$

• Now if we go to two neighboring states such that dz = 0and $dx \neq 0$, then it is necessary to have

$$1 - \frac{\partial \mathbf{x}}{\partial \mathbf{y}} \left|_{\mathbf{x}} \frac{\partial \mathbf{y}}{\partial \mathbf{x}} \right|_{\mathbf{x}} = 0$$

Or
$$\frac{\partial \mathbf{x}}{\partial \mathbf{y}} \left|_{\mathbf{x}} \frac{\partial \mathbf{y}}{\partial \mathbf{x}} \right|_{\mathbf{x}} = 1$$

$$1 - \frac{\partial x}{\partial y} \Big|_{z} \frac{\partial y}{\partial x} \Big|_{z} = 0 \qquad \text{Or } \frac{\partial x}{\partial y} \Big|_{z} \frac{\partial y}{\partial x} \Big|_{z} = 1 \qquad \text{Or } \frac{\partial x}{\partial y} \Big|_{z} = \frac{1}{\frac{\partial y}{\partial x}} \Big|_{z}$$

• We can call the above as Reciprocal Rule

Rules of Partial Derivatives-I

• Now let us look at the relation between partial derivatives

$$dx = \frac{\partial x}{\partial y} \bigg|_{z} dy + \frac{\partial x}{\partial z} \bigg|_{y} dz$$

• Similarly, we can write

$$dy = \frac{\partial y}{\partial x} \bigg|_{z} dx + \frac{\partial y}{\partial z} \bigg|_{x} dz$$

• Substituting the expression for dy in second equation into the first equation, we get

$$dx = \frac{\partial x}{\partial y} \bigg|_{z} \left(\frac{\partial y}{\partial x} \bigg|_{z} dx + \frac{\partial y}{\partial z} \bigg|_{x} dz \right) + \frac{\partial x}{\partial z} \bigg|_{y} dz$$

Rules of Partial Derivatives-III

• Now if we go to two neighboring states such that dx = 0and $dz \neq 0$, then, we can write,

$$\frac{\partial \mathbf{x}}{\partial \mathbf{y}}\Big|_{\mathbf{z}} \frac{\partial \mathbf{y}}{\partial \mathbf{z}}\Big|_{\mathbf{x}} = -\frac{\partial \mathbf{x}}{\partial \mathbf{z}}\Big|_{\mathbf{y}}$$

• Now applying the reciprocal rule, we can write

$$\frac{\partial \mathbf{x}}{\partial \mathbf{y}}\Big|_{\mathbf{z}} \frac{\partial \mathbf{y}}{\partial \mathbf{z}}\Big|_{\mathbf{x}} = \frac{-1}{\frac{\partial \mathbf{z}}{\partial \mathbf{x}}}\Big|_{\mathbf{x}}$$

$$\frac{\partial x}{\partial y}\bigg|_{z} \frac{\partial y}{\partial z}\bigg|_{x} = \frac{-1}{\frac{\partial z}{\partial x}\bigg|_{x}} \qquad \text{Or } \frac{\partial x}{\partial y}\bigg|_{z} \frac{\partial y}{\partial z}\bigg|_{x} \frac{\partial z}{\partial x}\bigg|_{y} = -1$$

• The above can be called as Cyclic Rule

Thermodynamic Functions-I

- Having laid the foundation for deriving property relations, we shall now go on to define two new thermodynamic functions called Helmholtz and Gibbs functions
- The Helmholtz function A and Gibbs function G are defined as

$$A = U - TS$$
 $G = H - TS$

• Their intensive counterparts are **a** and **g**

$$a = u - Ts$$
 $g = h - Ts$

• Now we shall begin manipulating these functions

11/15

Thermodynamic Functions-III

- Now let us manipulate Eq. (1), where u = u(s,v)du = Tds - pdv
- Chain rule implies

$$du = \frac{\partial u}{\partial s} \left| ds + \frac{\partial u}{\partial v} \right| dv$$

• Comparing the above two equations, we can write,

$$\frac{\partial \mathbf{u}}{\partial \mathbf{s}}\Big|_{\mathbf{v}} = \mathbf{T}, \quad \frac{\partial \mathbf{u}}{\partial \mathbf{v}}\Big|_{\mathbf{s}} = -\mathbf{p}$$

- From Eq. (2) dh = Tds + vdp

• We can write,
$$\frac{\partial h}{\partial s}\Big|_{p} = T$$
, $\frac{\partial h}{\partial p}\Big|_{s} = v$

12/15

Thermodynamic Functions-II

• Let us begin with the two Tds relations that we have derived earlier

$$du = Tds - pdv$$
 1

$$dh = Tds + vdp$$

• Differentiating the two functions defined in previous slide, we can write

$$da = du - Tds - sdT$$
 (3)

- dg = dh Tds sdT
- Substituting for du-Tds from Eq. (1) in Eq. (3) and similarly substituting for dh-Tds from Eq. (2) in Eq. (4), we get

$$da = -pdv - sdT$$

$$dg = vdp - sdT$$

Thermodynamic Functions-IV

- From Eq. (5) da = -pdv sdT
- We can write, $\frac{\partial a}{\partial v} = -p$, $\frac{\partial a}{\partial T} = -s$
- From Eq. (6) dg = vdp sdT
- We can write, $\frac{\partial g}{\partial p} = v$, $\frac{\partial g}{\partial T}$
- Thus we have obtained the basic thermodynamic properties, p,v,T and s have been defined as the derivative of u, h, a and g. Due to this aspect, u, h, a and g are also called **thermodynamic potentials**

13/15

Maxwell Relations

• Now we shall use the exact differential rule and relate the derivatives

$$du = Tds - pdv$$

$$\Rightarrow \frac{\partial \mathbf{T}}{\partial \mathbf{v}}\Big|_{\mathbf{s}} = -\frac{\partial \mathbf{p}}{\partial \mathbf{s}}\Big|_{\mathbf{v}}$$

$$dh = Tds + vdp$$

$$\Rightarrow \frac{\partial \mathbf{T}}{\partial \mathbf{p}} = \frac{\partial \mathbf{v}}{\partial \mathbf{s}}$$

$$da = -pdv - sdT$$

$$\Rightarrow \frac{\partial \mathbf{p}}{\partial \mathbf{T}} = \frac{\partial \mathbf{s}}{\partial \mathbf{v}}$$

$$dg = vdp - sdT$$

$$\Rightarrow \frac{\partial \mathbf{v}}{\partial \mathbf{T}}\Big|_{\mathbf{p}} = -\frac{\partial \mathbf{s}}{\partial \mathbf{p}}\Big|_{\mathbf{T}}$$

• The relations in Eqs. (11) - (14) are called Maxwell Relations

15/15

Auxiliary Relations-II

• Equating -s is Eqs. (8) and (10) to give

$$\Rightarrow \frac{\partial \mathbf{a}}{\partial \mathbf{T}} \Big|_{\mathbf{v}} = \frac{\partial \mathbf{g}}{\partial \mathbf{T}} \Big|_{\mathbf{p}} \qquad \mathbf{(8)}$$

- The fundamental question that arises is what is the use of all these relations?
- They provide means to construct property tables from the measured p, v and T data and some additional measurements
- The aim is to measure minimum quantities and construct property data

14/15

Auxiliary Relations-I

• Now we shall equate T is Eqs. (7) and (8) to give

$$\Rightarrow \frac{\partial \mathbf{u}}{\partial \mathbf{s}} \bigg|_{\mathbf{v}} = \frac{\partial \mathbf{h}}{\partial \mathbf{s}} \bigg|_{\mathbf{p}} \qquad \mathbf{15}$$

• Similarly equating -p is Eqs. (7) and (9) to give

$$\Rightarrow \frac{\partial \mathbf{u}}{\partial \mathbf{v}}\Big|_{\mathbf{s}} = -\frac{\partial \mathbf{a}}{\partial \mathbf{v}}\Big|_{\mathbf{T}} \qquad \textbf{(6)}$$

• Equating v is Eqs. (8) and (10) to give

$$\Rightarrow \frac{\partial \mathbf{h}}{\partial \mathbf{p}} \bigg|_{\mathbf{s}} = \frac{\partial \mathbf{g}}{\partial \mathbf{p}} \bigg|_{\mathbf{T}}$$

