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Concept of Exact Differential-I

• Consider a property surface. Let it be 
a p,v,T surface

• Let point 1 and 2 be close to each 
other and the point 1-2 can be 
reached by infinite number of 
paths. If we look at dv = V2-V1, it 
should be independent of the path
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• Let 1-A and B-2 be isotherms and 1-B and A-2 be 
isobars
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Concept of Exact Differential-II
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• As the points are close by, we can write the previous 
equation as 
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• The value of a mixed differential is independent of the 
order of differentiation 

• The result is a consequence of assuming dv is 
independent of direction. Those differentials that 
satisfy this property are called exact differentials

Concept of Exact Differential-III
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• Every property change is an exact differential and 
Every exact differential represents change of a 
property

• The whole thing can be generalised as, given three 
variables x, y and z and they have a relation of the 
form

dy)y,x(Ndx)y,x(Mdz +=

then the differential dz is exact, if
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Concept of Exact Differential-IV

• In thermodynamics, knowing that properties are exact, 
we shall equate the cross derivatives
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• Now let us look at the relation between partial 
derivatives
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• Substituting the expression for dy in second equation 
into the first equation, we get
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Rules of Partial Derivatives-I
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• Collecting the coefficients of dx and dz, we can write
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• Now if we go to two neighboring states such that dz = 0 
and dx ≠ 0, then it is necessary to have
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• We can call the above as Reciprocal Rule

Rules of Partial Derivatives-II
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• Now if we go to two neighboring states such that dx = 0 
and dz ≠ 0, then, we can write,
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• The above can be called as Cyclic Rule

Rules of Partial Derivatives-III
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Thermodynamic Functions-I

• Having laid the foundation for deriving property 
relations, we shall now go on to define two new 
thermodynamic functions called Helmholtz and Gibbs 
functions

• The Helmholtz function A and Gibbs function G are 
defined as

TSUA −= TSHG −=

• Their intensive counterparts are a and g

Tsua −= Tshg −=

• Now we shall begin manipulating these functions
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• Let us begin with the two Tds relations that we have 
derived earlier

• Differentiating the two functions defined in previous 
slide, we can write

pdvTdsdu −= 1 vdpTdsdh += 2

sdTTdsduda −−= 3 sdTTdsdhdg −−= 4

• Substituting for du-Tds from Eq. (1) in Eq. (3) and 
similarly substituting for dh-Tds from Eq. (2) in Eq. (4), 
we get 

sdTpdvda −−= 5 sdTvdpdg −= 6

Thermodynamic Functions-II
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• Now let us manipulate Eq. (1), where u = u(s,v)

pdvTdsdu −=

• Chain rule implies
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• Comparing the above two equations, we can write, 

• From Eq. (2) vdpTdsdh +=

• We can write, 
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Thermodynamic Functions-III
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• From Eq. (5) 

• We can write, s
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• From Eq. (6) 

• We can write, s
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• Thus we have obtained the basic thermodynamic 
properties, p,v,T and s have been defined as the 
derivative  of u, h, a and g. Due to this aspect, u, h, a 
and g are also called thermodynamic potentials

Thermodynamic Functions-IV
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• Now we shall use the exact differential rule and relate 
the derivatives

pdvTdsdu −=

vdpTdsdh +=

sdTpdvda −−=

sdTvdpdg −=
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• The relations in Eqs. (11) – (14) are called Maxwell 
Relations

Maxwell Relations
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• Now we shall equate T is Eqs. (7) and (8) to give 
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• Similarly equating -p is Eqs. (7) and (9) to give 

• Equating v is Eqs. (8) and (10) to give 
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Auxiliary Relations-I
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• Equating -s is Eqs. (8) and (10) to give 
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• The fundamental question that arises is what is the use of 
all these relations?

• They provide means to construct property tables from 
the measured p, v and T data and some additional 
measurements

• The aim is to measure minimum quantities and construct 
property data

Auxiliary Relations-II
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