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• Let us explore as to how an enthalpy table can be 
constructed for water that has a complex behaviour when 
both liquid and vapour phases have to be addressed 
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• The equation that connects dh and dp is

• As we need the derivative of h with p along constant T, 
we can manipulate the previous equation and write,
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• Thus, we can write 
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• Thus, along an isobar, 
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• Now, if we move along isotherm, we can write
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• For finding the change in enthalpy, we need cp variation 
with T at one convenient pressure and v(p,T)
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Thus for any single-phase region we can use this concept
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• We had shown that 

• If we had ideal gas, then
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• Thus, h only varies with temperature and is independent 
of pressure

Application-IV
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Relation Between cp and Entropy

• From the Tds relation,
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• Now we shall derive the relationship for change in 
entropy
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From previous slide

• The change in entropy can be obtained just as we got 
change in enthalpy by using pvT relation and cp as a 
function of T at one reference pressure.

• For ideal gas, it is fairly straight forward to show that 
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• We have shown how thermodynamic properties (h,s) can 
be computed for a fluid, from a reference datum, by 
knowing the pvT relation and cp as a function of  T at a 
reference pressure

• From our previous chapters, we have recognised that in 
phase change region, there is degeneracy between p and 
T as one depends on the other.

• This leads to the following 
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• Thus we have shown that the variation of saturated 
pressure with temperature is independent of at least two 
paths. Being a simple substance, two independent path 
having no effect can be generalised to the statement

• Using Tds relation along the constant pressure line

vdpTdsdh +=
fgfg Tsh =⇒

fg

fg

satphase2processany v

s

dT

dp

T

p
==

∂

∂
⇒

−−

20

21

• Eqs. (20) and (21) lead to

Clapeyron Equation
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• At low pressures, this can be simplified as follows
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• If hfg can be fitted as a function of T, then the above 
equation can be analytically integrated to get an 
expression for ln(p)

2

fg

sat RT

h

dT

)pln(d
=⇒ Clausius-Clapeyron Equation23

∫=⇒
−−

Sat

fReSat

T

T
2

fg

fResat

sat dT
RT

)T(h

p

p
ln

Properties with Phase Change-III

2

fg

RT

ph
=

10/17

• Now we can bridge the two ends of saturated region and 
construct the variation of h and s in the whole of state 
space from a given reference point.

Properties with Phase Change-IV

• We had already seen the procedure to compute h and s 
between any two points in single-phase phase using cp at 
a reference pressure and the pvT relation in the state 
space 

• From the pvT relation,  at any given T on the two-phase 
dome, we should be able to estimate hg-hf with known          
and vfg by using Eq. (22) and sg-sf using Eq. (21) satdT

dp

• The procedure to estimate is graphically now 
demonstrated in the next slide
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• To get properties (h,s) at 2, we use the route 1-1*-2*-2

• To get properties (h,s) at 3, we can use the route 1-s -
3
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• There are several other themodynamic properties that 
are used in different fields. These are just introduced 
here for the sake of completeness
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• We will show in compressible fluid flow that
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Other Thermodynamic Properties-II
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Joule-Thompson Coefficient

• This property can also be 
experimentally measured by 
conducting a porous plug 
experiment

P1, T1 P2, T2

• The valve controls the flow and hence the pressure 
drop

• If there is no work and heat interaction and if kinetic 
and potential effects are negligible, the process is 
Isenthalpic

Other Thermodynamic Properties-III
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• For a given initial pressure and temperature, the exit 
pressure can be adjusted by adjusting the valve and 
exit temperature can be measured.

T

p

• The slope of the curve obtained is the 
Joule-Thompson Coefficient

• It can be positive, 
negative or zero

• The value at which the 
slope is zero is called 
inversion point

• If the initial state is to the 
left of inversion point, the 
gas will cool on expansion

Other Thermodynamic Properties-IV
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• While in principle, the previously described methods 
can be used, the newer computerised steam tables 
follow a different approach 

• They fit an equation for Helmholtz function a (ρ,T) 
and the constants are optimised using experimental 
data pvT and other parameters such as speed of 
sound, Joule-Thompson coefficient, etc.

• The properties can then be extracted using the 
following definitions
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Computerised Steam Tables
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