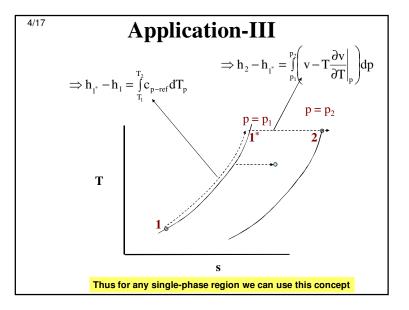


2/17
Application-I
• Let us explore as to how an enthalpy table can be
constructed for water that has a complex behaviour when
both liquid and vapour phases have to be addressed
$$h(T,p) \Rightarrow dh = \frac{\partial h}{\partial T}\Big|_p dT + \frac{\partial h}{\partial p}\Big|_T dp$$

• The equation that connects dh and dp is
 $dh = Tds + vdp$
• As we need the derivative of h with p along constant T,
we can manipulate the previous equation and write,
 $\Rightarrow \frac{\partial h}{\partial p}\Big|_T = T\frac{\partial s}{\partial p}\Big|_T + v \Rightarrow \frac{\partial h}{\partial p}\Big|_T = -T\frac{\partial v}{\partial T}\Big|_p + v$
Maxwell
Relation
Eq. (13)

3/17 Application-II
• Thus, we can write
$\Rightarrow dh = c_{p} dT + \left(v - T \frac{\partial v}{\partial T} \Big _{p} \right) dp (19)$
• Thus, along an isobar,
$\Longrightarrow dh_{p} = c_{p} dT_{p}$
• Now, if we move along isotherm, we can write
$\Rightarrow dh_{T} = \left(v - T \frac{\partial v}{\partial T} \Big _{p} \right) dp_{T}$
• For finding the change in enthalpy, we need c _p variation with T at one convenient pressure and v(p,T)



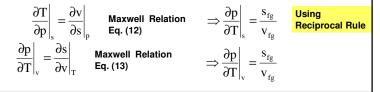
5/17 **Application-IV** • We had shown that $\Rightarrow dh = c_p dT + \left(v - T \frac{\partial v}{\partial T} \Big|_p \right) dp$ • If we had ideal gas, then $v = \frac{RT}{p} \Rightarrow \frac{\partial v}{\partial T} \Big|_p = \frac{R}{p} \Rightarrow T \frac{\partial v}{\partial T} \Big|_p = \frac{RT}{p} = v$ $\therefore dh = c_p dT$ • Thus, h only varies with temperature and is independent of pressure

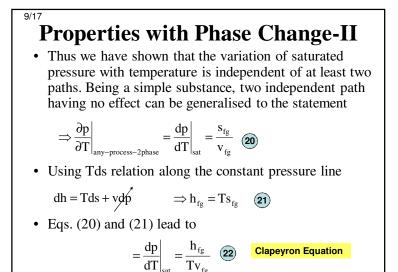
Evaluation of Entropy Change
• Now we shall derive the relationship for change in entropy $s(T,p) \Rightarrow ds = \frac{\partial s}{\partial T} \left _{p} dT + \frac{\partial s}{\partial p} \right _{r} dp$
From previous slide $= \frac{c_p}{T} dT + \left(-\frac{\partial v}{\partial T}\right)_p dp$ From Maxwell Relation Eq. (14)
• The change in entropy can be obtained just as we got change in enthalpy by using pvT relation and c _p as a function of T at one reference pressure.
• For ideal gas, it is fairly straight forward to show that
$ds = \frac{c_p}{T} dT - \frac{R}{p} dp$

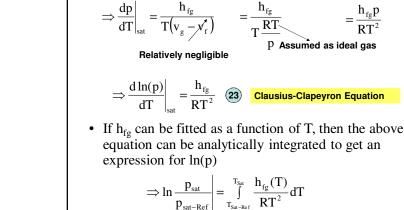
^{6/17} Relation Between c_p and Entropy
• From the Tds relation,
dh = Tds + vdp
$= T\left(\frac{\partial s}{\partial T}\Big _{p} dT + \frac{\partial s}{\partial p}\Big _{T} dp\right) + vdp$
$= T \frac{\partial s}{\partial T} \bigg _{p} dT + \left(T \frac{\partial s}{\partial p} \bigg _{T} + v \right) dp$
• Also, $dh = \frac{\partial h}{\partial T} \bigg _{p} dT + \frac{\partial h}{\partial p} \bigg _{T} dp$
$\Rightarrow T \frac{\partial s}{\partial T}\Big _{p} = c_{p}, \frac{\partial h}{\partial p}\Big _{T} = \left(T \frac{\partial s}{\partial p}\Big _{T} + v\right)$

- **Properties with Phase Change-I**
- We have shown how thermodynamic properties (h,s) can be computed for a fluid, from a reference datum, by knowing the pvT relation and c_p as a function of T at a reference pressure
- From our previous chapters, we have recognised that in phase change region, there is degeneracy between p and T as one depends on the other.
- This leads to the following

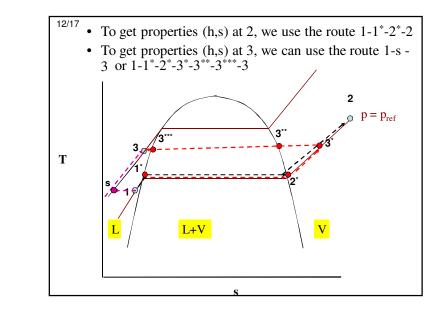
8/17







10/17



Properties with Phase Change-III • At low pressures, this can be simplified as follows

 $=\frac{h_{fg}p}{RT^2}$

Properties with Phase Change-IV

11/17

- Now we can bridge the two ends of saturated region and construct the variation of h and s in the whole of state space from a given reference point.
- We had already seen the procedure to compute h and s between any two points in single-phase phase using c_n at a reference pressure and the pvT relation in the state space
- From the pvT relation, at any given T on the two-phase dome, we should be able to estimate h_{e} - h_{f} with known $\frac{dp}{dr}$ and v_{fg} by using Eq. (22) and s_g - s_f using Eq. (21) dT
- The procedure to estimate is graphically now demonstrated in the next slide

^{13/17} Other Thermodynamic Properties-I

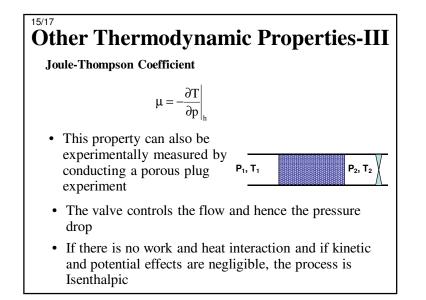
• There are several other themodynamic properties that are used in different fields. These are just introduced here for the sake of completeness

Volume Expansivity

$$\beta = \frac{1}{v} \frac{\partial v}{\partial T}$$

Isothermal Compressibility

14/17 Other Thermodynamic Properties-II Isentropic Compressibility $\alpha = -\frac{1}{v} \frac{\partial v}{\partial p}\Big|_{s}$ • We will show in compressible fluid flow that $c^{2} = \frac{\partial p}{\partial \rho}\Big|_{s} = -v^{2} \frac{\partial p}{\partial v}\Big|_{s}$ • This implies that $c^{2}\alpha = v \qquad \Rightarrow \alpha = \frac{v}{c^{2}}$ This can be experimentally estimated by measuring v and c



^{16/17} Other Thermodynamic Properties-IV For a given initial pressure and temperature, the exit pressure can be adjusted by adjusting the valve and exit temperature can be measured. The slope of the curve obtained is the Joule-Thompson Coefficient It can be positive, negative or zero The value at which the T slope is zero is called inversion point If the initial state is to the left of inversion point, the gas will cool on expansion

Computerised Steam Tables

• While in principle, the previously described methods can be used, the newer computerised steam tables follow a different approach

17/17

- They fit an equation for Helmholtz function a (ρ,T) and the constants are optimised using experimental data pvT and other parameters such as speed of sound, Joule-Thompson coefficient, etc.
- The properties can then be extracted using the following definitions

$$p = -\rho^2 \frac{\partial a}{\partial \rho}\Big|_{T}$$
 $s = -\frac{\partial a}{\partial T}\Big|_{\rho}$ $u = a + Ts$ $h = u + p/\rho$