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Basic Thermodynamics
Property Relations
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Application-I

* Let us explore as to how an enthalpy table can be
constructed for water that has a complex behaviour when
both liquid and vapour phases have to be addressed

oh oh
h(T, dh=— dT+— 4
(T.p) = arl ¢ o, p
* The equation that connects dh and dp is

dh =Tds + vdp

* As we need the derivative of h with p along constant T,
we can manipulate the previous equation and write,

oh ds oh av y
N Maxwell

=— — +v =>— =-T—
dp dp
Relation

=T
op oT
Eqg. (13)

T

T T
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Application-11
e Thus, we can write

= dh=c dT+ v—Tﬂ
P oT

P
* Thus, along an isobar,
=dh, =cdT,

* Now, if we move along isotherm, we can write
ov
JdPT
P

=dh, =| v-T—
! [ oT

* For finding the change in enthalpy, we need c, variation
with T at one convenient pressure and v(p,T)

417

Application-I11

P2
Sh,—h. = ]| v-T
T D AT
=h.—h, = fc, ,dT

P

p

1

S
Thus for any single-phase region we can use this concept
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Application-1V
¢ We had shown that

=dh =cpdT+[v—T§V

dp
|

* If we had ideal gas, then

RT av R av RT
vV=—— = —] =— :>T7 ==
p JaT|, p aT|, p
~.dh=c,dT

* Thus, h only varies with temperature and is independent
of pressure
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Relation Between c, and Entropy

¢ From the Tds relation,

dh =Tds + vdp
0s ds
=T| —| dT+— dp |+ vd
{an apl, p] P
:Té dT+ Té +v |dp
JT|, op|,
e Also,
dh:% dT—ka—k1 dp
JT], op|,
:>Té =c,, % :(Tas +v]
JT|, op|, op|,

A

Evaluation of Entropy Change

* Now we shall derive the relationship for change in
entropy

0s
s(T,p) =>ds=— dT+— dp
JT|, ap|,

From previous slide From Maxwell
— Relation Eq. (14)
= Sogr+| -2 ap
T T,

* The change in entropy can be obtained just as we got
change in enthalpy by using pvT relation and ¢, as a
function of T at one reference pressure.

Js

* For ideal gas, it is fairly straight forward to show that

ds=Srar—Rp
T P

Properties with Phase Change-1

* We have shown how thermodynamic properties (h,s) can
be computed for a fluid, from a reference datum, by
knowing the pvT relation and c, as a function of T at a
reference pressure

* From our previous chapters, we have recognised that in
phase change region, there is degeneracy between p and
T as one depends on the other.

* This leads to the following

S .
al = ﬁ Maxwell Relaton — — @ _fg gs";gr | Rul
dp|. Os|, Ea.(12) dT|, v, ~ Reciprocal Rule

s p s g

9P| _ 95| Maxwell Relation op|  Sg
Eq. (13 > =—*

aT v aV T q. (13) aT , Vfg
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Properties with Phase Change-II

* Thus we have shown that the variation of saturated
pressure with temperature is independent of at least two
paths. Being a simple substance, two independent path
having no effect can be generalised to the statement

_ S

_VTg

* Using Tds relation along the constant pressure line
dh:Tds+v/d1§ =h,=Ts, @

* Egs. (20) and (21) lead to

_ hfg @ Clapeyron Equation
sat TV

_dp

dT

9
oT

=

any—process—2phase sat

_dp
dT

fg

10/17

Properties with Phase Change-I11

* At low pressures, this can be simplified as follows

= d7p — hfg — hfg _ hfgp
dT sat T(Vg %) T&\ RT2
P Assumed as ideal gas
Relatively negligible
dl h,
= ;l’;p) N = sz @ Clausius-Clapeyron Equation

* If h, can be fitted as a function of T, then the above
equation can be analytically integrated to get an
expression for In(p)

=1In

T h, (T
Pa o X 2) T
psat—Rcf Tsut—ret RT
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Properties with Phase Change-1V

* Now we can bridge the two ends of saturated region and
construct the variation of h and s in the whole of state
space from a given reference point.

* We had already seen the procedure to compute h and s
between any two points in single-phase phase using c, at
areference pressure and the pvT relation in the state
space

* From the pvT relation, at any given T on the two-phase
dome, we should be able to estimate hy-h; with known P
and vg, by using Eq. (22) and s,-s; using Eq. (21) dT|,,

* The procedure to estimate is graphically now
demonstrated in the next slide

17 To get properties (h,s) at 2, we use the route 1-1"-2%-2
» To get properties (h,s) at 3, we can use the route 1-s -
3 or 1-1"-2"-3"-3".3"".3
2
P = Pret
| e

L L+V
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Other Thermodynamic Properties-I

* There are several other themodynamic properties that
are used in different fields. These are just introduced
here for the sake of completeness

Volume Expansivity

ey

B_VaT

p

Isothermal Compressibility

1 dv

v dp

T
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Other Thermodynamic Properties-II

Isentropic Compressibility

_lov

~ vop

s

* We will show in compressible fluid flow that

d d
ol = 9 __ v2 Y
ap|, avl,
* This implies that
2 v This can be experimentally

co=v =—
= C2 estimated by measuring v and ¢
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Other Thermodynamic Properties-I11

Joule-Thompson Coefficient

 This property can also be
experimentally measured by
conducting a porous plug P Ty
experiment

* The valve controls the flow and hence the pressure
drop

* If there is no work and heat interaction and if kinetic
and potential effects are negligible, the process is
Isenthalpic
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Other Thermodynamic Properties-1V
» For a given initial pressure and temperature, the exit

pressure can be adjusted by adjusting the valve and
exit temperature can be measured.

* The slope of the curve obtained is the
Joule-Thompson Coefficient

* It can be positive,
negative or zero

» The value at which the T )\
slope is zero is called

inversion point

* If the initial state is to the
left of inversion point, the

gas will cool on expansion p
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Computerised Steam Tables

* While in principle, the previously described methods
can be used, the newer computerised steam tables
follow a different approach

* They fit an equation for Helmholtz function a (p,T)
and the constants are optimised using experimental
data pvT and other parameters such as speed of
sound, Joule-Thompson coefficient, etc.

* The properties can then be extracted using the
following definitions

2 92

ap

_8a

p = —p —_
. T

u=a+Ts h=u+p/p

p




