

## Application-I

- Let us explore as to how an enthalpy table can be constructed for water that has a complex behaviour when both liquid and vapour phases have to be addressed

$$
\mathrm{h}(\mathrm{~T}, \mathrm{p}) \Rightarrow \mathrm{dh}=\left.\frac{\partial \mathrm{h}}{\partial \mathrm{~T}}\right|_{\mathrm{p}} \mathrm{dT}+\left.\frac{\partial \mathrm{h}}{\partial \mathrm{p}}\right|_{\mathrm{T}} \mathrm{dp}
$$

- The equation that connects dh and dp is

$$
\mathrm{dh}=\mathrm{Tds}+\mathrm{vdp}
$$

- As we need the derivative of $h$ with p along constant T , we can manipulate the previous equation and write,

$$
\left.\Rightarrow \frac{\partial \mathrm{h}}{\partial \mathrm{p}}\right|_{\mathrm{T}}=\left.\mathrm{T} \frac{\partial \mathrm{~s}}{\partial \mathrm{p}}\right|_{\mathrm{T}}+\left.\mathrm{v} \Rightarrow \frac{\partial \mathrm{~h}}{\partial \mathrm{p}}\right|_{\mathrm{T}}=-\left.\mathrm{T} \frac{\partial \mathrm{v}}{\partial \mathrm{~T}}\right|_{\mathrm{p}}+\mathrm{v} \underbrace{}_{\substack{\text { Maxwell } \\ \text { Relation } \\ \text { Eq. (13) }}}
$$



## 5/17

## Application-IV

- We had shown that

$$
\Rightarrow \mathrm{dh}=\mathrm{c}_{\mathrm{p}} \mathrm{dT}+\left(\mathrm{v}-\left.\mathrm{T} \frac{\partial \mathrm{v}}{\partial \mathrm{~T}}\right|_{\mathrm{p}}\right) \mathrm{dp}
$$

- If we had ideal gas, then

$$
\begin{aligned}
\mathrm{v}=\frac{\mathrm{RT}}{\mathrm{p}} \quad & \left.\Rightarrow \frac{\partial \mathrm{v}}{\partial \mathrm{~T}}\right|_{\mathrm{p}}=\left.\frac{\mathrm{R}}{\mathrm{p}} \quad \Rightarrow \mathrm{~T} \frac{\partial \mathrm{v}}{\partial \mathrm{~T}}\right|_{\mathrm{p}}=\frac{\mathrm{RT}}{\mathrm{p}}=\mathrm{v} \\
& \therefore \mathrm{dh}=\mathrm{c}_{\mathrm{p}} \mathrm{dT}
\end{aligned}
$$

- Thus, h only varies with temperature and is independent of pressure


## Relation Between $\mathrm{c}_{\mathrm{p}}$ and Entropy

- From the Tds relation,

$$
\begin{aligned}
\mathrm{dh} & =\mathrm{Tds}+\mathrm{vdp} \\
& =\mathrm{T}\left(\left.\frac{\partial \mathrm{~s}}{\partial \mathrm{~T}}\right|_{\mathrm{p}} \mathrm{dT}+\left.\frac{\partial \mathrm{s}}{\partial \mathrm{p}}\right|_{\mathrm{T}} \mathrm{dp}\right)+\mathrm{vdp} \\
& =\left.\mathrm{T} \frac{\partial \mathrm{~s}}{\partial \mathrm{~T}}\right|_{\mathrm{p}} \mathrm{dT}+\left(\left.\mathrm{T} \frac{\partial \mathrm{~s}}{\partial \mathrm{p}}\right|_{\mathrm{T}}+\mathrm{v}\right) \mathrm{dp}
\end{aligned}
$$

- Also,

$$
\begin{aligned}
& \quad \mathrm{dh}=\left.\frac{\partial \mathrm{h}}{\partial \mathrm{~T}}\right|_{\mathrm{p}} \mathrm{dT}+\left.\frac{\partial \mathrm{h}}{\partial \mathrm{p}}\right|_{\mathrm{T}} \mathrm{dp} \\
& \left.\Rightarrow \mathrm{~T} \frac{\partial \mathrm{~s}}{\partial \mathrm{~T}}\right|_{\mathrm{p}}=\mathrm{c}_{\mathrm{p}},\left.\quad \frac{\partial \mathrm{~h}}{\partial \mathrm{p}}\right|_{\mathrm{T}}=\left(\left.\mathrm{T} \frac{\partial \mathrm{~s}}{\partial \mathrm{p}}\right|_{\mathrm{T}}+\mathrm{v}\right)
\end{aligned}
$$

## Properties with Phase Change-I

- We have shown how thermodynamic properties $(h, s)$ can be computed for a fluid, from a reference datum, by knowing the pvT relation and $c_{p}$ as a function of $T$ at a reference pressure
- From our previous chapters, we have recognised that in phase change region, there is degeneracy between $p$ and T as one depends on the other.
- This leads to the following

$$
\begin{aligned}
\left.\frac{\partial \mathrm{T}}{\partial \mathrm{p}}\right|_{\mathrm{s}}=\left.\left.\frac{\partial \mathrm{v}}{\partial \mathrm{~s}}\right|_{\mathrm{p}} \underset{\substack{\text { Maxwell (12) Relation } \\
\left.\frac{\partial \mathrm{p}}{\partial \mathrm{~T}}\right|_{\mathrm{v}}}}{=\left.\frac{\partial \mathrm{s}}{\partial \mathrm{v}}\right|_{\mathrm{T}}} \begin{array}{c}
\substack{\text { Maxwell Relation } \\
\text { Eq. (13) }}
\end{array} \quad \Rightarrow \frac{\partial \mathrm{p}}{\partial \mathrm{~T}}\right|_{\mathrm{s}}=\frac{\mathrm{s}_{\mathrm{fg}}}{\mathrm{v}_{\mathrm{fg}}} \\
\mathrm{~m}_{\mathrm{v}}=\frac{\mathrm{s}_{\mathrm{fg}}}{\mathrm{v}_{\mathrm{fg}}}
\end{aligned}
$$

Using
Reciprocal Rule function of T at one reference pressure.

- For ideal gas, it is fairly straight forward to show that

$$
\mathrm{ds}=\frac{\mathrm{c}_{\mathrm{p}}}{\mathrm{~T}} \mathrm{dT}-\frac{\mathrm{R}}{\mathrm{p}} \mathrm{dp}
$$

## Properties with Phase Change-II

- Thus we have shown that the variation of saturated pressure with temperature is independent of at least two paths. Being a simple substance, two independent path having no effect can be generalised to the statement

$$
\begin{equation*}
\left.\Rightarrow \frac{\partial \mathrm{p}}{\partial \mathrm{~T}}\right|_{\text {any-process-2phase }}=\left.\frac{\mathrm{dp}}{\mathrm{dT}}\right|_{\text {sat }}=\frac{\mathrm{s}_{\mathrm{fg}}}{\mathrm{v}_{\mathrm{fg}}} \tag{20}
\end{equation*}
$$

- Using Tds relation along the constant pressure line

$$
\begin{equation*}
\mathrm{dh}=\mathrm{Tds}+\mathrm{vd} \mathrm{\rho} \quad \Rightarrow \mathrm{~h}_{\mathrm{fg}}=\mathrm{Ts}_{\mathrm{fg}} \tag{21}
\end{equation*}
$$

- Eqs. (20) and (21) lead to

$$
=\left.\frac{\mathrm{dp}}{\mathrm{dT}}\right|_{\mathrm{sat}}=\frac{\mathrm{h}_{\mathrm{fg}}}{\mathrm{Tv}_{\mathrm{fg}}} \text { (22) Clapeyron Equation }
$$

## Properties with Phase Change-III

- At low pressures, this can be simplified as follows

$$
\begin{gathered}
\left.\Rightarrow \frac{\mathrm{dp}}{\mathrm{dT}}\right|_{\text {sat }}=\frac{\mathrm{h}_{\mathrm{fg}}}{\mathrm{~T}\left(\mathrm{v}_{\mathrm{g}}-\not \chi_{\mathrm{f}}^{\prime}\right)}=\frac{\mathrm{h}_{\mathrm{fg}}}{\mathrm{~T} \frac{\mathrm{RT}}{\mathrm{p}} \text { Assumed as ideal gas }}=\frac{\mathrm{h}_{\mathrm{fg}} \mathrm{p}}{\mathrm{RT}^{2}} \\
\text { Relatively negligible } \\
\left.\Rightarrow \frac{\mathrm{d} \ln (\mathrm{p})}{\mathrm{dT}}\right|_{\text {sat }}=\frac{\mathrm{h}_{\mathrm{fg}}}{\mathrm{RT}^{2}} \text { (23) Clausius-Clapeyron Equation }
\end{gathered}
$$

- If $\mathrm{h}_{\mathrm{fg}}$ can be fitted as a function of T , then the above equation can be analytically integrated to get an expression for $\ln (\mathrm{p})$

$$
\Rightarrow \ln \frac{\mathrm{p}_{\text {sat }}}{\mathrm{p}_{\text {sat-Ref }}} \left\lvert\,=\int_{\mathrm{T}_{\text {sat-Ref }}}^{\mathrm{T}_{\text {sut }}} \frac{\mathrm{h}_{\text {fg }}(\mathrm{T})}{\mathrm{RT}^{2}} \mathrm{dT}\right.
$$

## Properties with Phase Change-IV

- Now we can bridge the two ends of saturated region and construct the variation of h and s in the whole of state space from a given reference point.
- We had already seen the procedure to compute $h$ and $s$ between any two points in single-phase phase using $c_{p}$ at a reference pressure and the pvT relation in the state space
- From the pvT relation, at any given T on the two-phase dome, we should be able to estimate $\mathrm{h}_{\mathrm{g}}-\mathrm{h}_{\mathrm{f}}$ with known $\frac{\mathrm{dp}}{\mathrm{dT}}$ and $\mathrm{v}_{\mathrm{fg}}$ by using Eq. (22) and $\mathrm{s}_{\mathrm{g}}-\mathrm{s}_{\mathrm{f}}$ using Eq. (21)
- The procedure to estimate is graphically now demonstrated in the next slide



## Other Thermodynamic Properties-I

- There are several other themodynamic properties that are used in different fields. These are just introduced here for the sake of completeness
Volume Expansivity

$$
\beta=\left.\frac{1}{\mathrm{v}} \frac{\partial \mathrm{v}}{\partial \mathrm{~T}}\right|_{\mathrm{p}}
$$

Isothermal Compressibility

$$
\kappa=-\left.\frac{1}{\mathrm{v}} \frac{\partial \mathrm{v}}{\partial \mathrm{p}}\right|_{\mathrm{T}}
$$

## Other Thermodynamic Properties-III

Joule-Thompson Coefficient

$$
\mu=-\left.\frac{\partial \mathrm{T}}{\partial \mathrm{p}}\right|_{\mathrm{h}}
$$

- This property can also be experimentally measured by conducting a porous plug
 experiment
- The valve controls the flow and hence the pressure drop
- If there is no work and heat interaction and if kinetic and potential effects are negligible, the process is Isenthalpic


## Other Thermodynamic Properties-II

Isentropic Compressibility

$$
\alpha=-\left.\frac{1}{\mathrm{v}} \frac{\partial \mathrm{v}}{\partial \mathrm{p}}\right|_{\mathrm{s}}
$$

- We will show in compressible fluid flow that

$$
c^{2}=\left.\frac{\partial p}{\partial \rho}\right|_{s}=-\left.v^{2} \frac{\partial p}{\partial v}\right|_{s}
$$

- This implies that

$$
\mathrm{c}^{2} \alpha=\mathrm{v} \quad \Rightarrow \alpha=\frac{\mathrm{v}}{\mathrm{c}^{2}} \quad \begin{aligned}
& \text { This can be experimentally } \\
& \text { estimated by measuring } \mathrm{v} \text { and } \mathrm{c}
\end{aligned}
$$

## Other Thermodynamic Properties-IV

- For a given initial pressure and temperature, the exit pressure can be adjusted by adjusting the valve and exit temperature can be measured.
- The slope of the curve obtained is the Joule-Thompson Coefficient
- It can be positive, negative or zero
- The value at which the $\mathbf{T}$ slope is zero is called inversion point
- If the initial state is to the left of inversion point, the gas will cool on expansion
$\frac{p}{p}$


## Computerised Steam Tables

- While in principle, the previously described methods can be used, the newer computerised steam tables follow a different approach
- They fit an equation for Helmholtz function a $(\rho, T)$ and the constants are optimised using experimental data pvT and other parameters such as speed of sound, Joule-Thompson coefficient, etc.
- The properties can then be extracted using the following definitions

$$
\mathrm{p}=-\left.\rho^{2} \frac{\partial \mathrm{a}}{\partial \rho}\right|_{\mathrm{T}} \quad \mathrm{~s}=-\left.\frac{\partial \mathrm{a}}{\partial \mathrm{~T}}\right|_{\mathrm{\rho}} \quad \mathrm{u}=\mathrm{a}+\mathrm{Ts} \quad \mathrm{~h}=\mathrm{u}+\mathrm{p} / \rho
$$

