
$2 / 20$

h-s diagram

- For open systems, with kinetic and potential effects neglected, we saw that for turbines, pumps/compressor and heat exchangers the heat/work per unit mass of the substance was directly related to change of enthalpy
- This motivated inventions of h-s diagrams, particularly for water substance
- These are called Mollier Diagrams

II Law for Open System-I

- Now let us consider the arbitrary system again
- At time, t, the total entroy of the control mass is $\mathrm{S}_{\mathrm{CV}}(\mathrm{t})+\delta \mathrm{m}_{\mathrm{i}} \mathrm{s}_{\mathrm{i}}$
- At time, $\mathrm{t}+\Delta \mathrm{t}$, the total energy of the control mass is $\mathrm{S}_{\mathrm{CV}}(\mathrm{t}+\Delta \mathrm{t})+\delta \mathrm{m}_{\mathrm{e}} \mathrm{s}_{\mathrm{e}}$
- During this $\Delta \mathrm{t}$, the system
 has heat interaction of $\delta \mathrm{Q}$. Usual Sign convention applies

II Law for Open System-II

- The second law for the control mass can be written as,

$$
\mathrm{S}_{\mathrm{CV}}(\mathrm{t}+\Delta \mathrm{t})+\delta \mathrm{m}_{\mathrm{e}} \mathrm{~s}_{\mathrm{e}^{-}} \quad\left(\mathrm{S}_{\mathrm{CV}}(\mathrm{t})+\delta \mathrm{m}_{\mathrm{i}} \mathrm{~s}_{\mathrm{i}}\right)=(\delta \mathrm{Q} / \mathrm{T})+\delta \mathrm{S}_{\mathrm{p}}
$$

- Rearranging and dividing both sides by $\Delta \mathrm{t}$ and shrinking the $\Delta \mathrm{t}$ to 0 , we can write,

$$
\begin{gathered}
\left.\frac{\mathrm{S}_{\mathrm{Cv}}(\mathrm{t}+\Delta \mathrm{t})-\mathrm{S}_{\mathrm{Cv}}(\mathrm{t})}{\Delta \mathrm{t}}\right|_{\Delta t \rightarrow 0}=\left.\frac{\delta \mathrm{Q}}{\Delta \mathrm{t}} \frac{1}{\mathrm{~T}}\right|_{\Delta t \rightarrow 0 \Delta t \rightarrow 0}+\left.\mathrm{s}_{\mathrm{i}} \frac{\delta \mathrm{~m}_{\mathrm{i}}}{\Delta \mathrm{t}}\right|_{\Delta t \rightarrow 0}-\left.\mathrm{s}_{\mathrm{e}} \frac{\delta \mathrm{~m}_{\mathrm{e}}}{\Delta \mathrm{t}}\right|_{\Delta t \rightarrow 0}+\left.\frac{\delta \mathrm{S}_{\mathrm{p}}}{\Delta \mathrm{t}}\right|_{\Delta t \rightarrow 0} \\
\text { or, } \frac{\mathrm{dS}}{\mathrm{CV}} \\
\mathrm{dt}
\end{gathered}=\frac{\dot{\mathrm{Q}}_{\mathrm{CV}}}{\mathrm{~T}}+\dot{\mathrm{m}}_{\mathrm{i}} \mathrm{~s}_{\mathrm{i}}-\dot{\mathrm{m}}_{\mathrm{e}} \mathrm{~s}_{\mathrm{e}}+\dot{\mathrm{S}}_{\mathrm{p}} \mathrm{l}
$$

Evaluation of Change in Entropy-II

- Proceeding on similar lines, we can use the second TdS relation

$$
\mathrm{TdS}=\mathrm{dH}-\mathrm{Vdp} \quad \text { and show }
$$

$\Rightarrow \mathrm{S}_{2}-\mathrm{S}_{1}=\mathrm{mc}_{\mathrm{p}} \ln \frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}}-\mathrm{mR} \ln \frac{\mathrm{p}_{2}}{\mathrm{p}_{1}}$

Evaluation of Change in Entropy-I

For the system with ideal gas

- Once the two states are known p

2 。
we can use the TdS relations
to evaluate the entropy change
$\mathrm{TdS}=\mathrm{dU}+\mathrm{pdV}$

$\Rightarrow \mathrm{TdS}=\mathrm{mc}_{\mathrm{v}} \mathrm{dT}+\frac{\mathrm{mRT}}{\mathrm{V}} \mathrm{dV}$
$\Rightarrow \mathrm{dS}=\mathrm{mc}_{\mathrm{v}} \frac{\mathrm{dT}}{\mathrm{T}}+\mathrm{mR} \frac{\mathrm{dV}}{\mathrm{V}}$
$\Rightarrow \int_{1}^{2} \mathrm{dS}=\mathrm{mc} \mathrm{v}_{\mathrm{v}}^{2} \int_{1}^{\mathrm{dT}} \frac{\mathrm{T}}{\mathrm{T}}+\mathrm{mR} \int_{1}^{2} \frac{\mathrm{dV}}{\mathrm{V}}$
$\Rightarrow \mathrm{S}_{2}-\mathrm{S}_{1}=\mathrm{mc}_{\mathrm{v}} \ln \frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}}+\mathrm{mR} \ln \frac{\mathrm{V}_{2}}{\mathrm{~V}_{1}}$

Evaluation of Change in Entropy-III

For the system with incompressible substance

- For incompressible substances the expansion
work is absent that makes $c_{p}=c_{v}=c$
TdS $=\mathrm{dU}+\mathrm{pdV}$
$\Rightarrow \mathrm{TdS}=\mathrm{dU}+\mathrm{pdV}$
$\Rightarrow \mathrm{TdS}=\mathrm{mcdT}$
$\Rightarrow \mathrm{dS}=\mathrm{mc} \frac{\mathrm{dT}}{\mathrm{T}}$
$\Rightarrow \int_{1}^{2} \mathrm{dS}=\mathrm{mc} \int_{1}^{2} \frac{\mathrm{dT}}{\mathrm{T}}$
$\Rightarrow \mathrm{S}_{2}-\mathrm{S}_{1}=\mathrm{mc} \ln \frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}}$

${ }^{920} \quad$ Isentropic efficiency-I

- Turbines, compressors and nozzles, perform ideally under isentropic conditions
- Turbine output decreases, Compressor input increases and nozzle KE developed decreases, under non-isentropic conditions

Isentropic efficiency-II

- We define isentropic efficiency as
$\eta_{\text {s-Turbine/ Nozzle }}=\frac{h_{i}-h_{e}}{h_{i}-h_{e^{*}}}$
$\eta_{\text {s-comp/pump }}=\frac{h_{e^{*}}-h_{i}}{h_{e}-h_{i}}$

Availability Balance Equation-II

- Eq. (4) can be recast as

$$
\Delta \mathrm{A}=\int_{1}^{2}\left(1-\frac{\mathrm{T}_{0}}{\mathrm{~T}}\right) \mathrm{dQ}-\left(\mathrm{W}-\mathrm{p}_{0} \Delta \mathrm{~V}\right)-\mathrm{T}_{0} \mathrm{~S}_{\mathrm{p}}
$$

Change of availability	Availability transfer due to heat exchange	Availability transfer due to work exchange	Work Lost Irreversibility

- The above equation is useful to directly compute maximum useful work that can be extracted
- Eq. (1) - Eq. (3) implies
$\int_{1}^{2}\left(1-\frac{\mathrm{T}_{0}}{\mathrm{~T}}\right) \mathrm{dQ}-\mathrm{W}-\mathrm{T}_{0} \mathrm{~S}_{\mathrm{p}}=\Delta \mathrm{E}-\mathrm{T}_{0} \Delta \mathrm{~S}=\Delta \mathrm{A}-\mathrm{p}_{0} \Delta \mathrm{~V}$

Exergy Analysis-I

- Combined first and second law analysis for flow systems is called Exergy Analysis
- The governing equation for the same can be derived as follows:

$$
\begin{align*}
& \frac{d E_{\mathrm{CV}}}{\mathrm{dt}}= \dot{\mathrm{Q}}_{\mathrm{CV}}-\dot{\mathrm{W}}_{\mathrm{CV}} \\
&+ \dot{\mathrm{m}}_{\mathrm{i}}\left(\mathrm{~h}_{\mathrm{i}}+\frac{\mathrm{V}_{\mathrm{i}}^{2}}{2}+\mathrm{gz}_{\mathrm{i}}\right) \\
&-\dot{\mathrm{m}}_{\mathrm{e}}\left(\mathrm{~h}_{\mathrm{e}}+\frac{\mathrm{V}_{\mathrm{e}}^{2}}{2}+\mathrm{gz}_{\mathrm{e}}\right) \tag{2}\\
& \frac{\mathrm{dS}}{\mathrm{CV}} \\
& \mathrm{dt}=\frac{\dot{\mathrm{Q}}_{\mathrm{CV}}}{\mathrm{~T}}+\dot{\mathrm{m}}_{\mathrm{i}} \mathrm{~s}_{\mathrm{i}}-\dot{\mathrm{m}}_{\mathrm{e}} \mathrm{~s}_{\mathrm{e}}+\dot{\mathrm{S}}_{\mathrm{p}}
\end{align*}
$$

- Eq. (1) - Eq. (2) $\times \mathrm{T}_{0}$ implies

$15 / 20 \quad$ Exergy Analysis-III

- Each of the term marked in the previous slides are as follows:

A Rate of change of Availability in the control volume
(B) Rate of change of Availability due to heat flow
(C) Rate of change of Availability due to work transfer

D Rate of production of Irreversibility
(E) Rate of Availability transported in
(E) Rate of Availability transported out

$$
\begin{align*}
& \text { Exergy Analysis-II } \\
& \frac{\mathrm{d}\left(\mathrm{E}_{\mathrm{CV}}-\mathrm{T}_{0} \mathrm{~S}_{\mathrm{CV}}\right)}{\mathrm{dt}}=\frac{\mathrm{d}\left(\mathrm{~A}_{\mathrm{CV}}-\mathrm{p}_{0} \mathrm{~V}_{\mathrm{CV}}\right)}{\mathrm{dt}}=\dot{\mathrm{Q}}_{\mathrm{CV}}\left(1-\frac{\mathrm{T}_{0}}{\mathrm{~T}}\right)-\dot{\mathrm{W}}_{\mathrm{CV}}-\mathrm{T}_{0} \dot{\mathrm{~S}}_{\mathrm{p}} \\
& +\dot{\mathrm{m}}_{\mathrm{i}}\left(\mathrm{~h}_{\mathrm{i}}+\frac{\mathrm{V}_{\mathrm{i}}^{2}}{2}+\mathrm{gz}_{\mathrm{i}}-\mathrm{T}_{0} \mathrm{~S}_{\mathrm{i}}\right) \\
& -\dot{\mathrm{m}}_{\mathrm{e}}\left(\mathrm{~h}_{\mathrm{e}}+\frac{\mathrm{V}_{\mathrm{e}}{ }^{2}}{2}+\mathrm{gZ}_{\mathrm{e}}-\mathrm{T}_{0} \mathrm{~S}_{\mathrm{e}}\right) \\
& \frac{\mathrm{d}\left(\mathrm{~A}_{\mathrm{CV}}\right)}{\mathrm{dt}}=\dot{\mathrm{Q}}_{\mathrm{CV}}\left(1-\frac{\mathrm{T}_{0}}{\mathrm{~T}}\right)-\left(\dot{\mathrm{W}}_{\mathrm{CV}}-\mathrm{C}_{0} \mathrm{p}_{0} \dot{\mathrm{~V}}_{\mathrm{CV}}\right)-\mathrm{T}_{0} \dot{\mathrm{~S}}_{\mathrm{p}} \tag{D}\\
& \text { (A) B }+\dot{m}_{\mathrm{i}}\left(\mathrm{~h}_{\mathrm{i}}+\frac{\mathrm{V}_{\mathrm{i}}{ }^{2}}{2}+\mathrm{gz}_{\mathrm{i}}-\mathrm{T}_{0} \mathrm{~s}_{\mathrm{i}}\right) \tag{E}\\
& -\dot{m}_{e}\left(h_{e}+\frac{V_{e}{ }^{2}}{2}+g z_{e}-T_{0} s_{e}\right) F
\end{align*}
$$

$16 / 20$ Exergy Analysis-IV

- The expression $\mathrm{h}+\frac{\mathrm{V}^{2}}{2}+\mathrm{gz}-\mathrm{T}_{0} \mathrm{~s}$ is called Exergy and is usually denoted by b
- The final availability balance equation can be stated as:

$$
\frac{\mathrm{d}\left(\mathrm{~A}_{\mathrm{CV}}\right)}{\mathrm{dt}}=\dot{\mathrm{Q}}_{\mathrm{CV}}\left(1-\frac{\mathrm{T}_{0}}{\mathrm{~T}}\right)-\left(\dot{\mathrm{W}}_{\mathrm{CV}}-\mathrm{p}_{0} \dot{\mathrm{~V}}_{\mathrm{CV}}\right)-\mathrm{T}_{0} \dot{\mathrm{~S}}_{\mathrm{p}}+\dot{\mathrm{m}}_{\mathrm{i}} \mathrm{~b}_{\mathrm{i}}-\dot{\mathrm{m}}_{\mathrm{e}} \mathrm{~b}_{\mathrm{e}}
$$

${ }^{17 / 20} \quad$ Second Law Efficiency-I

- Ideal processes have no entropy production. However, in many real processes, entropy production is inevitable, for e.g., heat exchangers, flash chambers, etc.
- Systems and processes that generate minimum entropy are preferred as they conserve energy resources
- An indicator is often desirable to compare processes and second law efficiency is an indicator in this direction
- Different definitions are given for various systems and we shall see some of them to get a flavour

Second Law Efficiency-III

Heat Exchangers

$$
\begin{gathered}
\frac{\mathrm{d}\left(\mathrm{~A}_{C \mathrm{v}}\right)}{\not \mathrm{dt}}=\dot{\mathrm{Q}}_{\mathrm{CV}}\left(\sqrt{\left(1-\frac{\mathrm{T}_{0}}{\mathrm{~T}}\right)-\left(\dot{\mathrm{W}}_{\mathrm{CV}}-\mathrm{p}_{0} \dot{\mathrm{~V}}_{\mathrm{CV}}\right)-\mathrm{T}_{0} \dot{\mathrm{~S}}_{\mathrm{p}}+\sum \dot{\mathrm{m}}_{\mathrm{i}} \mathrm{~b}_{\mathrm{i}}-\sum \dot{\mathrm{m}}_{\mathrm{e}} \mathrm{~b}_{\mathrm{e}}}\right. \\
\Rightarrow \sum \dot{\mathrm{m}}_{\mathrm{e}} \mathrm{~b}_{\mathrm{e}}+\mathrm{T}_{0} \dot{\mathrm{~S}}_{\mathrm{p}}=\sum \dot{\mathrm{m}}_{\mathrm{i}} \mathrm{~b}_{\mathrm{i}} \\
\eta_{\mathrm{II}}=\frac{\dot{\mathrm{m}}_{\text {cold }}\left(\mathrm{b}_{\mathrm{e} \text {-cold }}-\mathrm{b}_{\mathrm{i} \text {-cold }}\right)}{\dot{\mathrm{m}}_{\text {hot }}\left(\mathrm{b}_{\mathrm{i} \text {-hot }}-\mathrm{b}_{\mathrm{e} \text {-hot }}\right)} \\
\text { To get this value less } \\
\text { than 1, } \eta_{\text {II }} \text { is defined thus }
\end{gathered}
$$

$2020 \quad$ Second Law Efficiency-IV

Turbine

$$
\begin{gathered}
\frac{\mathrm{d}\left(\mathrm{~A}_{\mathrm{CV}}\right)}{\mathrm{dt}}=\dot{\mathrm{Q}}_{\mathrm{Cy}}\left(1-\frac{\mathrm{T}_{0}}{\mathrm{~T}}\right)-\left(\dot{\mathrm{W}}_{\mathrm{CV}}-\mathrm{p}_{0} \dot{\mathrm{~V}}_{\mathrm{CV}}\right)-\mathrm{T}_{0} \dot{\mathrm{~S}}_{\mathrm{p}}+\dot{\mathrm{m}}_{\mathrm{i}}\left(\mathrm{~b}_{\mathrm{i}}-\mathrm{b}_{\mathrm{e}}\right) \\
\dot{\mathrm{W}}_{\mathrm{CV}}=-\mathrm{T}_{0} \dot{\mathrm{~S}}_{\mathrm{p}}+\dot{\mathrm{m}}\left(\mathrm{~b}_{\mathrm{i}}-\mathrm{b}_{\mathrm{e}}\right) \\
\eta_{\mathrm{II}}=\frac{\dot{\mathrm{W}}_{\mathrm{CV}}}{\dot{\mathrm{~m}}\left(\mathrm{~b}_{\mathrm{i}}-\mathrm{b}_{\mathrm{e}}\right)}
\end{gathered}
$$

Compressor

- The equation is same, but the definition is reversed to keep the efficiency to be less than 1

$$
-\dot{\mathrm{W}}_{\mathrm{CV}}=\mathrm{T}_{0} \dot{\mathrm{~S}}_{\mathrm{p}}+\dot{\mathrm{m}}\left(\mathrm{~b}_{\mathrm{e}}-\mathrm{b}_{\mathrm{i}}\right) \quad \eta_{\mathrm{II}}=\frac{\dot{\mathrm{m}}\left(\mathrm{~b}_{\mathrm{e}}-\mathrm{b}_{\mathrm{i}}\right)}{-\dot{\mathrm{W}}_{\mathrm{CV}}}
$$

