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• The compressibility refers to the change of density 
of the fluid

• Density can change due to a change in pressure or 
temperature of a fluid

• In a Liquid, the density is a very weak function of 
pressure and but it can change perceptibly with 
temperature.

• In gas, the density is a strong function of 
temperature and pressure

Compressible Fluid Flow-I
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Compressible Fluid Flow-II

– Liquids

• Hydraulic Penstocks

• High pressure hydraulic circuits

• In liquids normally, it is only the transient that calls for 

compressible flow analysis

• In gases both steady and transient flow may call for 

compressible analysis

Applications of Compressible Flow 

– Gas

• Gas and Steam Turbines

• Rocket Nozzles,

• I.C. Engine ports,

• Combustion chambers

• Re-entry vehicles
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Compressible Fluid Flow-III

• It is a vast and complex subject

• Under some cases, we can treat the subject purely based 

on thermodynamic laws of mass and energy

• However, some concepts of momentum conservation is 

needed at places, which we shall consciously minimise.
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Conservation of Momentum-I

• Consider an arbitrary control volume as shown 

through which mass crosses (flowing from ducts)

MCV

Fluid in

Fluid 

out

• The aim shall be to Convert Newton’s Second Law 

for a control mass to a flow system

• We shall now look at two snapshots one at t and 

other at t+∆t
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Conservation of Momentum-II

• At time, t, the fluid fills 

the control volume and 

a portion of inlet duct
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• Let us consider the 

same mass of fluid as 

shown in yellow
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• The same fluid at t+∆t 

fills the control volume 

and a portion of exit duct.
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Conservation of Momentum-III

• Subtracting the above two equations, we get
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• Dividing both sides by ∆t and then shrinking ∆t to 0, 

we get
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• Newton’s Ssecond law implies
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Conservation of Momentum-IV

• If we put the above equation in words, we can 

write
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• At steady state
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Sum of all 

forces+ =  0
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• The equation derived above can be extended to a 
steadily moving control volume as follows

BSlReelReelReilRei FFVmVm0
rrr
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r
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• In the above equation all quantities refer to 
quantities with respect to relative frame of 
reference.

• Its application will make it clear in the following 
derivation

Conservation of Momentum-V
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Pressure Pulse Propagation-I

• Pressure pulses propagate in a compressible fluid 

with a characteristic speed.

• This is what we commonly call as speed of sound

• This speed is a property of the medium

• Consider a cylinder piston filled with a 

compressible fluid

• Let the piston be moved instantly

ρ= ,T,p,0V
c

ρ∆+ρ∆+

∆+∆=

,TT

pp,VV

Undisturbed fluid

• This will set a pressure wave moving at a speed c
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Pressure Pulse Propagation-II

• To derive a relation between the speed of 

propagation and system properties, let an observer 

ride on the wave. In this moving coordinate the 

fluid will be in steady state

Mass balance Ac)Vc(A)( ρ=∆−ρ∆+ρ⇒

c)VVcc ρ=∆ρ∆−∆ρ−ρ∆+ρ⇒
Second order

ρ
= ,cV

ρ∆+ρ
∆−= VcV

• For the moving coordinate the properties are as 

shown 

ρ
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Pressure Pulse Propagation-III

Momentum balance ( ) 0pA)Vc(mcm =∆−+∆−−⇒ &&
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• Eqs. (1) and (2)  
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Momentum balance
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Pressure Pulse Propagation-IV
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• At 300 K   s/m347300X287X4.1c ==

Note that c is independent of p and depends only on T

• For ideal gas   ds
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Newton had assumed the 

process to be Isothermal

13/14

Pressure Pulse Propagation-V

• For Solids and Liquids   

ρρ
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/d

dp
Bulk Modulus Ev
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For Water 20 oC, Ev = 2.24 x 109 N/m2 , ρ = 998 kg/m3
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For Steel 20 oC, Ev = 200 x 109 N/m2 , ρ = 7830 kg/m3
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