

Compressible Fluid Flow-I

- The compressibility refers to the change of density of the fluid
- Density can change due to a change in pressure or temperature of a fluid
- In a Liquid, the density is a very weak function of pressure and but it can change perceptibly with temperature.
- In gas, the density is a strong function of temperature and pressure

${ }^{3 / 4}$ Compressible Fluid Flow-II

Applications of Compressible Flow

- Gas
- Gas and Steam Turbines
- Rocket Nozzles,
- I.C. Engine ports,
- Combustion chambers
- Re-entry vehicles
- Liquids
- Hydraulic Penstocks
- High pressure hydraulic circuits
- In liquids normally, it is only the transient that calls for compressible flow analysis
- In gases both steady and transient flow may call for compressible analysis

Compressible Fluid Flow-III

- It is a vast and complex subject
- Under some cases, we can treat the subject purely based on thermodynamic laws of mass and energy
- However, some concepts of momentum conservation is needed at places, which we shall consciously minimise.

Conservation of Momentum-I

- Consider an arbitrary control volume as shown through which mass crosses (flowing from ducts)

- The aim shall be to Convert Newton's Second Law for a control mass to a flow system
- We shall now look at two snapshots one at t and other at $\mathrm{t}+\Delta \mathrm{t}$

Conservation of Momentum-II

- Let us consider the same mass of fluid as shown in yellow
- At time, t, the fluid fills
 the control volume and a portion of inlet duct
- The same fluid at $t+\Delta t$ fills the control volume and a portion of exit duct.

$$
\begin{aligned}
\overrightarrow{\mathrm{P}}_{\mathrm{CM}}(\mathrm{t}+\Delta \mathrm{t}) & =\overrightarrow{\mathrm{P}}_{\mathrm{CV}}(\mathrm{t}+\Delta \mathrm{t})+\delta \mathrm{m}_{\mathrm{e}} \overrightarrow{\mathrm{~V}}_{\mathrm{e}} \\
\overrightarrow{\mathrm{P}}_{\mathrm{CM}}(\mathrm{t}) & =\overrightarrow{\mathrm{P}}_{\mathrm{CV}}(\mathrm{t})+\delta \mathrm{m}_{\mathrm{i}} \overrightarrow{\mathrm{~V}}_{\mathrm{i}}
\end{aligned}
$$

Conservation of Momentum-III

- Subtracting the above two equations, we get
$\overrightarrow{\mathrm{P}}_{\mathrm{CM}}(\mathrm{t}+\Delta \mathrm{t})-\overrightarrow{\mathrm{P}}_{\mathrm{CM}}(\mathrm{t})=$

$$
\overrightarrow{\mathrm{P}}_{\mathrm{CV}}(\mathrm{t}+\Delta \mathrm{t})-\overrightarrow{\mathrm{P}}_{\mathrm{CV}}(\mathrm{t})+\delta \mathrm{m}_{\mathrm{e}} \overrightarrow{\mathrm{~V}}_{\mathrm{e}}-\delta \mathrm{m}_{\mathrm{i}} \overrightarrow{\mathrm{~V}}_{\mathrm{i}}
$$

- Dividing both sides by $\Delta \mathrm{t}$ and then shrinking $\Delta \mathrm{t}$ to 0 , we get

$$
\frac{\mathrm{d} \overrightarrow{\mathrm{P}}_{\mathrm{CM}}}{\mathrm{dt}}=\frac{\mathrm{d} \overrightarrow{\mathrm{P}}_{\mathrm{CV}}}{\mathrm{dt}}+\dot{\mathrm{m}}_{\mathrm{e}} \overrightarrow{\mathrm{~V}}_{\mathrm{e}}-\dot{\mathrm{m}}_{\mathrm{i}} \overrightarrow{\mathrm{~V}}_{\mathrm{i}}
$$

- Newton's Ssecond law implies

$$
\frac{\mathrm{d} \overrightarrow{\mathrm{P}}_{\mathrm{CM}}}{\mathrm{dt}}=\overrightarrow{\mathrm{F}}=\overrightarrow{\mathrm{F}}_{\mathrm{S}}+\overrightarrow{\mathrm{F}}_{\mathrm{B}}
$$

Conservation of Momentum-IV

$$
\begin{array}{r}
\Rightarrow \frac{\mathrm{d} \overrightarrow{\mathrm{P}}_{\mathrm{CV}}}{\mathrm{dt}}+\dot{\mathrm{m}}_{\mathrm{e}} \overrightarrow{\mathrm{~V}}_{\mathrm{e}}-\dot{\mathrm{m}}_{\mathrm{i}} \overrightarrow{\mathrm{~V}}_{\mathrm{i}}=\overrightarrow{\mathrm{F}}_{\mathrm{S}}+\overrightarrow{\mathrm{F}}_{\mathrm{B}} \\
\operatorname{Or} \frac{\mathrm{~d} \overrightarrow{\mathrm{P}}_{\mathrm{CV}}}{\mathrm{dt}}=\dot{\mathrm{m}}_{\mathrm{i}} \overrightarrow{\mathrm{~V}}_{\mathrm{i}}-\dot{\mathrm{m}}_{\mathrm{e}} \overrightarrow{\mathrm{~V}}_{\mathrm{e}}+\overrightarrow{\mathrm{F}}_{\mathrm{S}}+\overrightarrow{\mathrm{F}}_{\mathrm{B}}
\end{array}
$$

- At steady state

$$
0=\dot{\mathrm{m}}_{\mathrm{i}} \overrightarrow{\mathrm{~V}}_{\mathrm{i}}-\dot{\mathrm{m}}_{\mathrm{e}} \overrightarrow{\mathrm{~V}}_{\mathrm{e}}+\overrightarrow{\mathrm{F}}_{\mathrm{S}}+\overrightarrow{\mathrm{F}}_{\mathrm{B}}
$$

- If we put the above equation in words, we can write

| Rate of
 momentum
 entering CV$-\quad$Rate of
 momentum
 exiting CV |
| :--- |$+\quad$| Sum of all |
| :--- |
| forces |$=0$

Conservation of Momentum-V

- The equation derived above can be extended to a steadily moving control volume as follows

$$
0=\dot{\mathrm{m}}_{\mathrm{i}-\mathrm{Rel}} \overrightarrow{\mathrm{~V}}_{\mathrm{i} \text {-Rel }}-\dot{\mathrm{m}}_{\mathrm{e}-\mathrm{Rel}} \overrightarrow{\mathrm{~V}}_{\mathrm{e}-\mathrm{Rel}}+\overrightarrow{\mathrm{F}}_{\mathrm{S}}+\overrightarrow{\mathrm{F}}_{\mathrm{B}}
$$

- In the above equation all quantities refer to quantities with respect to relative frame of reference.
- Its application will make it clear in the following derivation

Pressure Pulse Propagation-I

- Pressure pulses propagate in a compressible fluid with a characteristic speed.
- This is what we commonly call as speed of sound
- This speed is a property of the medium
- Consider a cylinder piston filled with a compressible fluid
- Let the piston be moved instantly
- This will set a pressure wave moving at a speed c

Pressure Pulse Propagation-II

- To derive a relation between the speed of propagation and system properties, let an observer ride on the wave. In this moving coordinate the fluid will be in steady state
- For the moving coordinate the properties are as shown

$$
\begin{array}{l:l}
\mathrm{V}=\overline{\mathrm{c}-\Delta \mathrm{V}} \longleftarrow \\
\rho+\Delta \rho
\end{array}\left\{\begin{array}{l}
\mathrm{V}=\mathrm{c} \\
\rho
\end{array}\right.
$$

Mass balance $\Rightarrow(\rho+\Delta \rho) A(c-\Delta V)=\rho A c$

$$
\Rightarrow \rho c+\Delta \rho c-\rho \Delta V-\Delta \rho \Delta \Delta V)=\rho c
$$

$$
\therefore \Delta \mathrm{V}=\frac{\mathrm{c} \Delta \rho}{0}
$$

Pressure Pulse Propagation-III

Momentum balance

$$
\dot{\mathrm{m}(\mathrm{c}-\Delta \mathrm{V}) \longleftarrow} \mathrm{p}+\Delta \mathrm{p} \longrightarrow\left\{\begin{array}{l}
\dot{\mathrm{mc}} \\
\mathrm{p}
\end{array} \quad\right. \text { Positive direction }
$$

Momentum balance $\Rightarrow \dot{\mathrm{m}} \hat{\mathrm{c}}-\dot{\mathrm{m}}\left(\dot{c}^{\hat{}}-\Delta \mathrm{V}\right)+(-\Delta \mathrm{pA})=0 \quad$ No friction
in out force
$\Rightarrow \dot{\mathrm{m}} \Delta \mathrm{V}-\Delta \mathrm{pA}=0$

$$
\begin{aligned}
& \Rightarrow \Delta \mathrm{V}=\frac{\Delta \mathrm{pA}}{\dot{\mathrm{~m}}}=\frac{\Delta \mathrm{pA}}{\rho \hat{\mathrm{~A}} \mathrm{c}}=\frac{\Delta \mathrm{p}}{\rho \mathrm{c}} \\
& \Rightarrow \Delta \mathrm{~V}=\frac{\Delta \mathrm{p}}{\rho \mathrm{C}}
\end{aligned}
$$

- Eqs. (1) and (2) $\Longrightarrow \frac{c \Delta \rho}{\rho}=\frac{\Delta p}{\rho c} \Longrightarrow c^{2}=\frac{\Delta p}{\Delta \rho}=\frac{d p}{d \rho}$

Pressure Pulse Propagation-IV

- For ideal gas $\quad d p=\left.\frac{\partial \mathrm{p}}{\partial \rho}\right|_{\mathrm{s}} \mathrm{d} \rho+\left.\frac{\partial \mathrm{p}}{\partial \mathrm{s}}\right|_{\rho}$ ds $\begin{aligned} & \text { Assuming the process } \\ & \text { to be adiabatic } \rightarrow \mathrm{ds}=0\end{aligned}$

Newton had assumed the process to be Isothermal

$\mathrm{s}=$ cons $\tan \mathrm{t} \Rightarrow \frac{\mathrm{p}}{\rho^{\gamma}}=$ cons $\tan \mathrm{t} \quad \Rightarrow \ln (\mathrm{p})-\gamma \ln (\rho)=$ cons $\tan \mathrm{t}$
$\Rightarrow \frac{\mathrm{dp}}{\mathrm{p}}-\gamma \frac{\mathrm{d} \rho}{\rho}=0 \quad \Rightarrow \frac{\mathrm{dp}}{\mathrm{d} \rho}=\gamma \frac{\mathrm{p}}{\rho} \quad \therefore \mathrm{c}^{2}=\gamma \frac{\mathrm{p}}{\rho}=\gamma \mathrm{RT} \quad \Rightarrow \mathrm{c}=\sqrt{\gamma \mathrm{RT}}$ (3)

- At $300 \mathrm{~K} \quad \mathrm{c}=\sqrt{1.4 \mathrm{X} 287 \mathrm{X} 300}=347 \mathrm{~m} / \mathrm{s}$

Note that c is independent of p and depends only on T

Pressure Pulse Propagation-V

- For Solids and Liquids

$$
\text { Bulk Modulus } \mathrm{E}_{\mathrm{v}}=\frac{\mathrm{dp}}{d \rho / \rho} \quad \Rightarrow \frac{d p}{d \rho}=\frac{E_{\mathrm{V}}}{\rho}=c^{2} \quad \Rightarrow c=\sqrt{\frac{E_{V}}{\rho}}
$$

For Water $20^{\circ} \mathrm{C}, \mathrm{E}_{\mathrm{v}}=2.24 \times 10^{9} \mathrm{~N} / \mathrm{m}^{2}, \rho=998 \mathrm{~kg} / \mathrm{m}^{3}$

$$
\therefore \mathrm{c}=\sqrt{\frac{2.2 \times 10^{9}}{998}} \approx 1500 \mathrm{~m} / \mathrm{s}
$$

For Steel $20^{\circ} \mathrm{C}, \mathrm{E}_{\mathrm{v}}=200 \times 10^{9} \mathrm{~N} / \mathrm{m}^{2}, \rho=7830 \mathrm{~kg} / \mathrm{m}^{3}$

$$
\therefore \mathrm{c}=\sqrt{\frac{200 \times 10^{9}}{7830}} \approx 5050 \mathrm{~m} / \mathrm{s}
$$

