

2/14

4/14

Compressible Fluid Flow-I

- The compressibility refers to the change of density of the fluid
- Density can change due to a change in pressure or temperature of a fluid
- In a Liquid, the density is a very weak function of pressure and but it can change perceptibly with temperature.
- In gas, the density is a strong function of temperature and pressure

Compressible Fluid Flow-II

Applications of Compressible Flow

– Gas

3/14

- Gas and Steam Turbines
- Rocket Nozzles,
- I.C. Engine ports,
- Combustion chambers
- Re-entry vehicles
- Liquids
 - Hydraulic Penstocks
 - High pressure hydraulic circuits
- In liquids normally, it is only the transient that calls for compressible flow analysis
- In gases both steady and transient flow may call for compressible analysis

Compressible Fluid Flow-III

- It is a vast and complex subject
- Under some cases, we can treat the subject purely based on thermodynamic laws of mass and energy
- However, some concepts of momentum conservation is needed at places, which we shall consciously minimise.

1

^{7/14} **Conservation of Momentum-III** • Subtracting the above two equations, we get $\vec{P}_{CM}(t + \Delta t) - \vec{P}_{CM}(t) =$ $\vec{P}_{CV}(t + \Delta t) - \vec{P}_{CV}(t) + \delta m_e \vec{V}_e - \delta m_i \vec{V}_i$ • Dividing both sides by Δt and then shrinking Δt to 0, we get $\frac{d\vec{P}_{CM}}{dt} = \frac{d\vec{P}_{CV}}{dt} + \dot{m}_e \vec{V}_e - \dot{m}_i \vec{V}_i$ • Newton's Ssecond law implies $\frac{d\vec{P}_{CM}}{dt} = \vec{F} = \vec{F}_S + \vec{F}_B$

^{8/14} Conservation of Momentum-IV			
$\Rightarrow \frac{d\vec{P}_{CV}}{dt} + \dot{m}_{e}\vec{V}_{e}$	$-\dot{m}_i\vec{V}_i=\vec{F}_S+\vec{F}_B$		
$Or \frac{d\vec{P}_{CV}}{dt} = \dot{m}_i \vec{V}$	$\dot{V}_i - \dot{m}_e \vec{V}_e + \vec{F}_S + \vec{F}_B$	3	
• At steady state	e		
$0 = \dot{m}_i \vec{V}_i - \dot{m}_e \vec{V}_e + \vec{F}_S + \vec{F}_B$			
• If we put the write	above equation in	words, we can	1
Rate of momentum - entering CV	Rate of momentum + exiting CV	Sum of all forces	= 0

Conservation of Momentum-V

• The equation derived above can be extended to a steadily moving control volume as follows

9/14

11/14

$$0 = \dot{m}_{i-Re1} \vec{V}_{i-Re1} - \dot{m}_{e-Re1} \vec{V}_{e-Re1} + \vec{F}_{S} + \vec{F}_{B}$$

- In the above equation all quantities refer to quantities with respect to relative frame of reference.
- Its application will make it clear in the following derivation

10/14

Pressure Pulse Propagation-I

- Pressure pulses propagate in a compressible fluid with a characteristic speed.
- This is what we commonly call as speed of sound
- This speed is a property of the medium
- Consider a cylinder piston filled with a compressible fluid
- Let the piston be moved instantly

 $V = \Delta V, p + \Delta p$

 $T + \Delta T, \rho + \Delta \rho^{*}$

• This will set a pressure wave moving at a speed c

 \mathbf{c} V = 0, p, T, ρ

Undisturbed fluid

Pressure Pulse Propagation-II

- To derive a relation between the speed of propagation and system properties, let an observer ride on the wave. In this moving coordinate the fluid will be in steady state
- For the moving coordinate the properties are as shown

$$V = c - \Delta V \qquad \begin{cases} V = c, \\ \rho + \Delta \rho \end{cases}$$
Mass balance $\Rightarrow (\rho + \Delta \rho) A(c - \Delta V) = \rho A c$

$$\Rightarrow \rho c + \Delta \rho c - \rho \Delta V - \Delta \rho \Delta V) = \rho c$$
Second order $\therefore \Delta V = \frac{c \Delta \rho}{\rho}$

