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• Let us now try to apply mass momentum and 

energy for a one dimensional flow

• The approach is very popular during design phase 

for many practical applications.

• Let us develop these from the concepts developed 

thus far

ONE DIMENSIONAL ANALYSIS
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Conservation of Mass - I
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Conservation of Mass - I

• At steady state
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Conservation of Momentum - I
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Conservation of Momentum - II
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Conservation of Momentum - IV

• At steady state
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I-Law of Thermodynamics
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• At steady state
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Equation of State
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Mach Number

• In compressible flow it is useful to unify all the results 

in terms of Mach Number

• Mach Number is defined as the ratio of fluid velocity 

and the local sonic speed

• Thus the Mach Cone angle can be written as

• All property changes can be related to local Mach 

number as follows
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Property Relations-I
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Property Relations-II
Finally Mass balance [Eq. (2)]
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• We shall derive many general conclusions from all the 

relations derived above

• Equation (9) implies that for M< 0.3, fractional 

change in density is less than 9% of fractional change 

in velocity. 
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Property Relations-III

• This is the general incompressibility condition 

commonly used

• Equation (8) implies that for M< 0.3, fractional 

change in Temperature for air is less than 4% of 

fractional change in velocity

• Most importantly, equation (10) underlines the 

characteristic difference between subsonic (M<1) and 

Supersonic flows (M>1)

• This is discussed in next slide
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Property Relations-IV
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If M < 1 or 1-M2 > 0, then dV > 0 for dA < 0 and dV < 0 for dA > 0 

• The above conditions imply that the nozzle will be 

converging and the diffuser will be diverging under 

subsonic conditions

• The opposite, i.e., nozzle will be diverging and 

diffuser will be converging under supersonic 

conditions is given by the condition stated below

If M > 1 or 1-M2 < 0, then dV < 0 for dA < 0 and dV > 0 for dA > 0 
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Stagnation Properties

• When a fluid is brought to rest from a given state 

under isentropic conditions, the resulting properties 

are called stagnation properties

• These are denoted with the subscript ‘0’

• Thus, h0, p0, T0, ρ0 are stagnation enthalpy, pressure, 

temperature and density

• The following results can be written:

• We shall now show the relations between two points 

in isentropic flow   
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15/42

Isentropic Flow-I
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Isentropic Flow-II
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Isentropic Flow-III
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Isentropic Flow-IV

• If point 2 is the stagnation point and point 1 is any 

general point, then 
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• For air (γ=1.4), the values of T0/T, c0/c, ρ0/ ρ, p0/p are 

tabulated as a function of Mach number
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19/42 Concept of Static and Stagnation  

Pressure-I
• Static Pressure: Local thermodynamic pressure measured 

without changing its state

• Stagnation Pressure: It is the hypothetical pressure that will 

be measured, if the fluid is brought to rest in a frictionless 

manner at the same elevation 

The relationship between static and stagnation pressure for 

incompressible flow can be obtained by Bernoulli’s equation

2

2

2
21

2

1
1 gH

2

V
pgH

2

V
p ρ+

ρ
+=ρ+

ρ
+

0

H1 = H2

2

V
pp

2

staticstagnation

ρ
+=∴

2

V2ρ
The term           is called dynamic pressure
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Concept of Static and Stagnation  

Pressure-II
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Pitot Tube-I
• Local fluid velocity can be estimated, if static and 

stagnation pressures can be measured.
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For liquids

This can be done by using Pitot-static tube
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For gases

• Concept of piezometric head
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• The same concepts can be extended to compressible 

flow

pp

pp
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For gases

• p3 is the stagnation pressure

• p4 is the local static pressure
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• In slide 18, we have shown 

that

• Thus by knowing p and po, we 

can measure the Mach number

Pitot Tube-II
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Isentropic Flow-V

• If the Mach number at the general point is 1, then the 

condition of the fluid is called critical.

• The properties at critical state are denoted with a * in 

the superscript

• We can derive the following relations between the 

critical and stagnation properties  
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Flow in a Variable Area Passage-I

)M1(

1

A

dA

V

dV
2−

−=⇒Eq. (10)

• We had shown earlier that

• This implies that if we have a converging nozzle and 

initial Mach number is less than 1, then it will 

accelerate till Mach number becomes one.

• It should be understood that for a given p0 and T0, the 

boundary condition at the other end shall either be pamb

or M = 1.

• Let us understand the flow characteristics qualitatively
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Flow in a Variable Area Passage-II

Converging Nozzle
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Flow in a Variable Area Passage-III

Converging Nozzle
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For a given A/A*, 

we have 2 Mach 

Numbers

Flow in a Variable Area Passage-IV

• To get the ratio between A/A*, we invoke mass 

balance
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Flow in a Variable Area Passage-V

• Several general observations can be made

• In isentropic flow, A/A* is also a function of Mach 

number only

• A* implies area where Mach number is 1

• In a converging nozzle it is the smallest area

• In a converging-diverging (CD) nozzle, it will be the 

throat

• A nozzle is said to be choked when M = 1 at the throat.

• Mass flow rate reaches a maximum when a nozzle is 

choked (for a given stagnation condition)

29/42

Flow in a Variable Area Passage-VII

• The mass flow can be estimated as follows
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Flow in a Variable Area Passage-VIII

• For given p0 and ρ0, mass flow rate given by Eq. (29) 

in the previous slide is a function of p/p0

• The function in the parenthesis, when plotted gives 

maxima at p/p0 = 0.528 for  γ =1.4
Function
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Function

• The same can be analytically obtained by differentiating 

Eq. (29) and equating to 0, leading to
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Flow in a Variable Area Passage-IX

• The expression for maximum mass flow can 

now be obtained by substituting for p/p0 from 

above in Eq. (29) expressing cp in terms of γ

and R

• Thus, if the stagnation conditions are known, 

then the nozzle can be designed for a desired 

mass flow rate
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• We can recast the mass flow rate equation (Eq.(29)  in 

the following form. Note the reference is throat.
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above two 

equations
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• The right side of the curve for 0.528 > p/po > 1, the 

curve can very closely represented by an ellipse given by
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• If we plot the non-dimensional mass flow rate equation 

we get the following variation

Variation of mass flow rate

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1 1.2

p/p0

m
d

o
t/

m
d

o
t_

m
a
x

Isentropic

Isentropic-Ellipse Comparison

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1 1.2

p/p0

m
d

o
t/

m
d

o
t_

m
a
x

Isentropic

Elliptic

Error less than 0.5%

34/42

Flow in a Variable Area Passage-X

• Before concluding, let us visit C- nozzle again
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• The non-dimensional mass flow rate for C-nozzle can 

be drawn
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• The variation of pressure at exit plane and at back of 

C-nozzle can be as shown
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Normal Shock-I

• We saw that a normal shock can arise in a CD 

nozzle

• During normal shock there are jump in properties

• We shall establish relation ships in properties 

before and after a normal shock

Mass balance

2211 VV ρ=ρ⇒

Energy balance
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02010201 TThh =⇒=⇒

1111 V,T,,p ρ

2222 V,T,,p ρ
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Normal Shock-II

• Since flow is isentropic on both sides of the shock 

(except at the shock front)
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• From Continuity,
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Normal Shock-III
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Momentum balance
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Normal Shock-IV
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Eqs (33) and (34) =
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Normal Shock-V
• Squaring both sides, cross multiplying and 

simplifying leads to
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• It is now straightforward to derive the following
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Normal Shock-VI
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Normal Shock
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