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ME 209
Basic Thermodynamics
Introduction to Compressible Flow-11
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ONE DIMENSIONAL ANALYSIS

* Let us now try to apply mass momentum and
energy for a one dimensional flow

* The approach is very popular during design phase
for many practical applications.

* Let us develop these from the concepts developed
thus far
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Conservation of Mass - I

A+ a—A AX
A - Area (m?) ox
V- Velocity (my/s) A V+ 37\, AX
P — Density (kg/m’) \Y M ] X
. P
m_ p +—AX
Mass flow rate (kg/s) 0 p Ix
x — Coordinate along pipe (m) . dm
m+— Ax
ox
Rate of
accumulation of - Massflow —_ Mass flow rate
mass in CV " rateintoCV out of CV

IPAAX) _ m—[m+a—mmj _ 9(pA) J{a_rhjzo
ot X ot ox
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Conservation of Mass - I

* At steady state

a(pt )+(%_mj=o = = pAV =Constant
X

= pAdV +AVdp +VpdA =0 ©

av__da_dp

TNV TTA T @
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Conservation of Momentum - 1
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Conservation of Momentum - 11

Rate of Sum of all
accumulation of = Momentum - Momentufmcv + for(,te.s in
momentumn in rate into CV rate out o pf’SItlYe
(6\Y% direction
JomV actin,
. : gon
PAAXV mV mV + x Ax cv

PA-— (pA+apAA j+paAA =—Aa—pr
ox ) ox

d(pAuAx) _ mﬂv_(%” a(r'nV)j_AapAX
ot X ox
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Conservation of Momentum - IV

* At steady state

dehv) | dp

0=
dx dx

30:M+Adl As mass flow rate is

dx dx constant
dV op
=0=pAV—+A—
p.ﬁ ox
o=y, 1 1 9P @) Note that this is valid
dx pox for variable area too

Decrease in pressure results in increase of velocity
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I-Law of Thermodynamics

o At steady state

0=Qcy V&/+m((h h)+ )y/)j

\A \A 2
3hi+7— 5 :>dh+d(V—J:0
2

:>ch+¢1[ ] 0o @

Increase in velocity results in decrease of Temperature
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Equation of State

Equation of State

p
=pRT =—=R
p=p pT

pT Tp* pT?
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Mach Number

* In compressible flow it is useful to unify all the results
in terms of Mach Number

* Mach Number is defined as the ratio of fluid velocity
and the local sonic speed =M =V/c

e Thus the Mach Cone angle can be written as o=Sin~'(1/M)

» All property changes can be related to local Mach
number as follows

Momentum balance [Eq. (3)]

v 1dp dp  pV?av
V—=———= — —_——_——
dx  pox =pVdV=-dp = ) oV
P dp V7V i\ .
S — = —_— ==Y —:—M —
ince 0 2 :>p ycz v v v
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Property Relations-I

Energy balance [Eq. (4)] — deT + d(V%) =0

=dT=-V—

dv 2 2
4T __1V7dV. 41 yRV?dV

=
cp T Te, V T 2
Cc,—C
Note :>YR=Y(PV)={1_1J=Y_1

CP CP Y
dT 2 dV
= (M2

—=--’ S @

Equation of State [Eq. (5)]
d dv
_dp_dp dT  _dp_av
p p T p

dp » dV
=>—=-M"—
p Vv ‘

(—yM2 +(y—1)M2)

» vV
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Property Relations-II
Finally Mass balance [Eq. (2)]

dv dp dA
>—+——=—-—

vV p A
2, dV

dp
i =>—=-M
Equation (15) 0 v

dv dA
-MH) =22
(=M= (10)

* We shall derive many general conclusions from all the
relations derived above

* Equation (9) implies that for M< 0.3, fractional
change in density is less than 9% of fractional change
in velocity.
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Property Relations-II1

This is the general incompressibility condition
commonly used

Equation (8) implies that for M< 0.3, fractional
change in Temperature for air is less than 4% of
fractional change in velocity

Most importantly, equation (10) underlines the
characteristic difference between subsonic (M<1) and
Supersonic flows (M>1)

This is discussed in next slide
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Property Relations-IV

Eq.(10) 4V __da_ 1
\ A (1-M?)

IfM <1 or 1-M?> 0, then dV > 0 for dA < 0 and dV < 0 for dA >0

* The above conditions imply that the nozzle will be
converging and the diffuser will be diverging under
subsonic conditions

* The opposite, i.e., nozzle will be diverging and
diffuser will be converging under supersonic
conditions is given by the condition stated below

IfM>1 or 1-M?< 0, then dV < 0 for dA < 0 and dV > 0 for dA >0
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Stagnation Properties

When a fluid is brought to rest from a given state
under isentropic conditions, the resulting properties
are called stagnation properties

These are denoted with the subscript ‘0’

Thus, hy, py, Ty, py are stagnation enthalpy, pressure,
temperature and density

The following results can be written:
2

=h,=h+ v Comes from energy balance .
&
=>T,=T +2— Ideal gas and constant specific heat ‘
C
P

We shall now show the relations between two points
in isentropic flow
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Isentropic Flow-I

* For isentropic flow, We can write

- » !
orevnt (82T (48
T Va P1 T U

0.5 - y-1
. Cy T2 pPs 2y Py 2
* Since c¢=./YRT :—:[_J :[_J —| P2
€1 Tl P1 P1
2 2
* Energy equation :>h1+V71:h2 +_V§
:>CpT1+V—1=CpT2+—V2 ST+ =T, 42 2T,
2 2 2c
p p
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Isentropic Flow-II

2 2
T +L Tl 1+ Vl
1 2¢, 2¢,Ty
= V.2 =1 = V.2 -
T, +—2 T,| 1+ 2
2c, 2c,T,
VE VP MMR Mg lei(e,—e,)  MA(y-D)
2
2¢,T e & 2c, 2c, 2
p
YR
1+ = v 2
.27 @
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Isentropic Flow-III

e v-1 2 |-l
_ 1+ — M
« Similarly, since (&]{&]“’1 P ( 2 ] :

19/42

Isentropic Flow-IV

* If point 2 is the stagnation point and point 1 is any
general point, then

T, 1 c A
=2 _1+(Y2 jM :TO:{H(YTJMZ} (6)
s
:p_oz{H(Y__l)Mz]{_l ‘
p 2
Y

LM o
P

* For air (y=1.4), the values of Ty/T, cy/c, py/ p, py/p are
tabulated as a function of Mach number

** Concept of Static and Stagnation
Pressure-1

» Static Pressure: Local thermodynamic pressure measured
without changing its state

» Stagnation Pressure: It is the hypothetical pressure that will
be measured, if the fluid is brought to rest in a frictionless
manner at the same elevation

The relationship between static and stagnation pressure for
incompressible flow can be obtalned by Bernoulli’s equation

P l +[§‘Q =p,+ %""péﬁz

! p%lagnalmn p%lallc 2
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Concept of Static and Stagnation
Pressure-II

Stagnation point Stagnation streamline
—’-\ 4

Stagnation point
(a) (b)

Pitot Tube-I

* Local fluid velocity can be estimated, if static and
stagnation pressures can be measured.

* Concept of piezometric head o

For liquids For gases
e (4)
v (i)
—_— e ————
P (2) 1 )
p;=p + Ep v

This can be done by using Pitot-static tube
Ps =D
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Pitot Tube-II

* The same concepts can be extended to compressible

flow
* ps;is the stagnation pressure @
* p,is the local static pressure
e Inslide 18, we have shown For gases
that —
e
— —1
P | [T e |
p 2 Lol
- =

e Thus by knowing p and p,, we
can measure the Mach number
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Isentropic Flow-V
 If the Mach number at the general point is 1, then the
condition of the fluid is called critical.
» The properties at critical state are denoted with a * in
the superscript

* We can derive the following relations between the
critical and stagnation properties

:%:H(Y_—ljzv_ﬂ 19)

2 2

Y

1
:>p_2:|:7+1}7—1 . :>p_2:|:’y+l}y—l ‘
P - p -
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Eq. (10) 2%__‘1/* 1

Flow in a Variable Area Passage-I
This implies that if we have a converging nozzle and

initial Mach number is less than 1, then it will
accelerate till Mach number becomes one.

‘We had shown earlier that

A (1-M?)

It should be understood that for a given p, and T, the

boundary condition at the other end shall either be p,;,
orM=1.

Let us understand the flow characteristics qualitatively
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Flow in a Variable Area Passage-II

Converging Nozzle
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Flow in a Variable Area Passage-III

Converging Nozzle

-

l

i
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Flow in a Variable Area Passage-IV

* To get the ratio between A/A", we invoke mass
balance

* * * A * *
AV=p'AV' === =
PAV =p .

= For a given A/A”,
we have 2 Mach

Numbers M
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Flow in a Variable Area Passage-V

Several general observations can be made

In isentropic flow, A/A™ is also a function of Mach
number only

A" implies area where Mach number is 1
In a converging nozzle it is the smallest area

In a converging-diverging (CD) nozzle, it will be the
throat

A nozzle is said to be choked when M = 1 at the throat.

Mass flow rate reaches a maximum when a nozzle is
choked (for a given stagnation condition)
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Flow in a Variable Area Passage-VII
¢ The mass flow can be estimated as follows

V2
:>h0=h+7 :>V2=20p(TO—T)

. _

:szchTo[l—J = V?=2T, 1{"
T P

0 Po |

¥l
Y

m=ApV = Apo[pJY 2 T,| 1- {p

Po Po |
g L‘*’l 0.5
Y Y
i =Ap,| 2¢,T, {p} {p} 29)
Po Po
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Flow in a Variable Area Passage-VIII

For given p, and p,, mass flow rate given by Eq. (29)
in the previous slide is a function of p/p,

The function in the parenthesis, when plotted gives
maxima at p/p, = 0.528 for y=1.4

Function

0 0.2 0.4 0.6 0.8 1 12
X

The same can be analytically obtained by differentiating
Eq. (29) and equating to 0, leading to
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Flow in a Variable Area Passage-IX

P _ {2}7_1 -0.528 Fory=14

P, LV+I1

* The expression for maximum mass flow can
now be obtained by substituting for p/p, from
above in Eq. (29) expressing ¢, in terms of y
and R il

. 2 \2y-1)
m =A _ AIRT,
= max lp()(,y_'_lJ Y 0 ‘

* Thus, if the stagnation conditions are known,
then the nozzle can be designed for a desired
mass flow rate
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We can recast the mass flow rate equation (Eq.(29) in
the following form. Note the reference is throat.

4l 0.5

2
y-1 Po Po

T+l
. 2 )2(y-1)
=My = Atpo(mj YRTO

0.5

From Eq. (30)
Y+1

2 hast
S BR5)
Y=1| | po Py

From the

= - = above two

v+

mmax 2 2(y-1)
Y+1

equations
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If we plot the non-dimensional mass flow rate equation
we get the following variation

Variation of mass flow rate

]
g o8
% 06
g
E o4
g 02
0

0 0.2 0.4 06 08 1 12
p/po

The right side of the curve for 0.528 > p/po > 1, the
curve can very closely represented by an ellipse given by

Isentropic-Ellipse Comparison

2 RN
b —0.528} (mJ 1o

m_. 3 os —e— Isentropic|

- pO - + max :1 § Z:
0.472 1 L

0 02 04 0.6 08 1 1.2

Error less than 0.5 % -
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Flow in a Variable Area Passage-X

Before concluding, let us visit C- nozzle again

The non-dimensional mass flow rate for C-nozzle can
be drawn

The variation of pressure at exit plane and at back of
C-nozzle can be as shown

1.000 /
P. 0.528 :

: Po
0528 1 0 5
0528 1
Py
Po Po

Po
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Normal Shock-I

¢ We saw that a normal shock can arise in a CD

nozzle

* During normal shock there are jump in properties

*  We shall establish relation ships in properties

before and after a normal shock

Mass balance [ VA
=>pVi=p2V, -
Energy balance \

=h, +0.5V,> =h, +0.5V,°

b ’T ’V
=hg =hyp = Ty =Ty, PPz %, Va2
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Normal Shock-II

* Since flow is isentropic on both sides of the shock
(except at the shock front)

As Ty, = Ty, (from previous slide)

* From Continuity,
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Normal Shock-IIT

3Ezp_zvz Py My, &szTz
T Vi pp Mg py Ml\/T_1

\/ﬁ _ P2 M2:>T2 _(PzM }2.
\/?1 P M, T,
( )

[
”(Yzlj ‘

v-1
+— M
[2j ?
1 M2 1+(’Y1]
2

<2

[\) ‘
(3]

Egqs 31)and (32) = —>r—%——

[}

=>p Vi =pV, = 13}1 v, = 1312,2 V,
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Normal Shock-1V

Momentum balance
2 2 2 2
=>p-pP2=pPV2 PV =p eV =p PV,
2 2 2 2
=>p+pM;¢;” =p, +p,M; ¢,

P P
:>P1+E{M1 YR, = P2+72M2 RT,

RT,
py _ 1+ YMl
= —== 2 .

P 1+yM,
-1 05
2
M, H{ JMI 1+yM,
Eqs (33)and 34) = — —1 = ey
2 1+[7 JMZZ ™

40/42

Normal Shock-V

* Squaring both sides, cross multiplying and
simplifying leads to

* It is now straightforward to derive the following

1+ v

e

Ti 1+%M22

10
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Normal Shock-VI

U tVEN
_M, 2
M, 1+'Y;1M12

Y+l

e B PIC
1+—M

2 ¢ M,
1+ 2 =

2
- :l =P

2 Py
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Normal Shock

—— M
o | ——p02/p01

Value

Normal Shock

—=— p2/pt
——T2/T1
—%— rho2/rhot

11



