

First Law - I

Adiabatic process

2/46

4

- By definition, adiabatic process is that which involves only work interaction between system and surroundings
- Joule performed several experiments and showed that W_{ad} is a constant when a adiabatic system is taken from a given state to another given state..

$$\mathbf{W}_{\mathrm{ad}}\big|_{1}^{2} = \mathrm{cons} \tan t$$

• This is one form of first law (Caratheodory), the other common form will be seen soon

3/46	First Law - I
•	If we can define a variable φ such that,
	$ \mathbf{W}_{\mathrm{ad}} = \Delta \boldsymbol{\varphi}$
•	Then ϕ qualifies to be a property. Usually, this is denoted by E and is called Energy. Thus,
	$ W_{ad} = -\Delta E$
•	The negative sign is added to have consistency of sign convention
•	Note that work done on the system (which is -ve)

 Note that work done on the system (which is -ve) will increase the energy of the system

1	Energy		
Forms of Energy			
Ener	rgy	The Associated Potential	
Poter	ntial	Energy possessed by virtue of elevation from earth	
Kine	tic	Energy possessed by virtue of motion	
Inter	nal	Energy Possessed by virtue ofElasticityChemical CompositionTemperature	
	$\Delta E = \Delta P F$	$E + \Delta KE + \Delta IE$	

1

Internal Energy

- Internal Energy possessed by virtue of Temperature is called is usually denoted by U
- In this course, Unless explicitly mentioned, $\Delta IE = \Delta U$
- Since energy has the same unit as work, it will be expressed in Joules
- Some people still use Calories
 - 1 Calorie = 4.18 J
- Specific internal energy is denoted with **u**, and has the units J/kg

7/46

5/46

Heat Interaction - II

The following Observations/Comments may be noted

- Q is also is energy in transit and occurs due to temperature difference between system and surroundings. It is called Heat. Will be expressed in Joules
- The highlighted equation in previous slide is the **First Law**
- In adiabatic process Q = 0
- For consistency of first law, Q into the system is positive for the system
- Only E can be stored and not Q or W

Forms of First Law for a Closed System

- We had seen that the first law for a process is dE = dQ-dW
- If the process were a cycle, then

 $0 = \oint dQ - \oint dW$

• The same law can be written in the rate form as

$$\frac{dE}{dt} = \dot{E} = \dot{Q} - \dot{W}$$