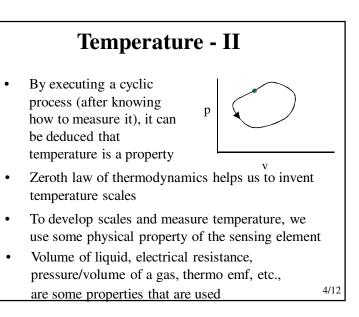


Review

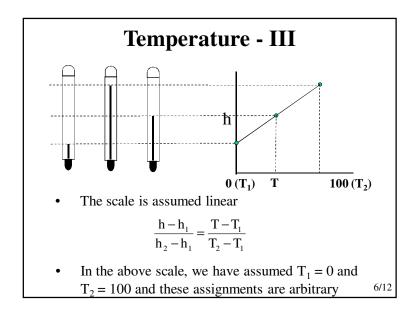

- We had argued axiomatically that Temperature is nothing but labels of isotherms.
- Isotherms were sequence of states for a system to have no heat interaction with a surrounding whose state was fixed.
- Such system states for which there are no heat interactions with surroundings are said to be in thermal equilibrium with surroundings

2/12

1

Temperature - I

- Humans could sense temperature long before development of thermometers. However, judgement cannot be quantified.
- Bodies at different temperature, when brought in contact and left isolated, undergo changes in physical properties before they attain equilibrium, called **thermal equilibrium**
- The energy interaction by virtue of change in temperature is called **heat interaction** and will be studied later


Temperature - III

Zeroth Law

- It states that If a body A is in thermal equilibrium with body B (sensing element) and the body B is in thermal equilibrium with body C, then body A is in thermal equilibrium with body C
- What this implies is that both bodies A and C when in thermal equilibrium, will make body B have the same value of a physical property, which can be used to create a temperature scale
- Let us first look at two point reference temperature scales

5/12

7/12

Temperature - IV

Two Point scales

• In Celsius scale, the first state corresponds to melting ice and the second state corresponds to boiling steam at 1 standard atmosphere

Other Scales

Scale	Melting ice value	Boiling steam value
Kelvin	273.15	373.15
Fahrenheit	32	212
Rankine	491.67	671.67

• Inter conversion is fairly straight forward

Temperature - IV

- As the interest of temperature spread to higher temperatures, thermometric substance other than mercury had to be looked into
- Gas turned out to be convenient option as it can be used at widely varying temperatures
- Gas at lower pressures obey Boyle's law

pV = Constant

- Ideal gas is one that obeys Boyle's law everywhere
- Using Boyle's and Charles Law, the ideal gas equation of state can be expressed as

pV = mRT

2

Temperature - IV

One Point scale

- The triple point of water, where solid, liquid and ٠ gas phases of water coexist is chosen as the reference and is assigned a value 273.16
- The relation used to find the other temperature ٠ values are

$$\frac{\phi}{\phi_R} = \frac{T}{T_R} \quad \text{Or} \quad T = 273.16 \frac{\phi}{\phi_R}$$

In the above ϕ and ϕ_R are the property values at T and T_R

• If we use a fixed mass of gas as a thermometric substance

$$T = 273.16 \frac{(pV)}{(pV)_R}$$

 $0(T_1)$

T_{actual}

Temperature - VI

International Practical Scale

- It is clumsy to use gas thermometer in practical ٠ environment
- To facilitate calibration a practical scale has been ٠ evolved. It is summarized in the next slide

Reference	Value (K)	
Triple Point of H ₂	13.8033	
Triple Point of Ne	24.5561	
Triple point of O ₂	54.3584	Source http://en.wikipedia.org/ wiki/International_Tem perature_Scale_of_1990
Triple point of Ar	83.8058	
Triple point of Hg	234.316	
Triple point of Water	273.16	
Melting Point of Ga	302.915	
Freezing Point of In	429.749	
Freezing point of Sn	505.078	
Freezing point of Zn	692.677	
Freezing point of Al	933.473	
Freezing point of Ag	1234.93	
Freezing point of Au	1337.33	
Freezing point of Cu	1357.77	

9/12