

Properties-1

2/15

- We saw previously that simple substances are those which have one reversible work mode.
- According to the state principle such substances can have only two properties that can be defined independently.
- Equation of state is the relationship that connects a third property to the other two independent properties.
- The simplest is the one we saw and extensively used is the ideal gas law.
- Now we shall build on this and see how real substances can be modelled

Equation of State

• Remember p,v,T surface is just one such surface.

5/15

- We can generate many such surfaces like, s,v,T; h,s,T, etc.
- First we will address p,v,T surface now and then we shall look at more property relations later in the course.
- The foundation for ideal gas was laid by Robert Boyle in 1660, who showed that at lower pressures pV = constant for a gas at same temperature.
- The general interpretation is that as the volume is halved then the number density of molecules double and twice as many molecules bang the wall resulting in double pressure.

6/15

8/15

Ideal Gas Law

• Combining Boyle's law, Charles Law and Avogadro's hypothesis, the ideal gas equation was constructed

$$p \alpha 1/V \qquad p \alpha T \qquad p \alpha n$$
$$\Rightarrow p \alpha \frac{nT}{V} \qquad \Rightarrow pV = nR_uT$$
• This is a simpler form of what is called a generalised compressible gas law given by

$$pv = Z \left(\frac{R_u}{M}\right) T$$

Z is the generalised compressibility factor Z = 1 for ideal gas

C

Compressibility Factor-II• Another type of expansion used is $Z = 1 + \frac{cl(T)}{v} + \frac{c2(T)}{v^2} + \frac{c3(T)}{v^3} + \dots$ Also called Virial
Expansion• In the above expansions, as p is small or when v is
large, Z reduces to 1 leading to ideal gas.or when v is
lags was
proposed by van der Waals to explain the real gas
behaviour. The equation is given by

$$p + \frac{a}{v^2} \bigg) (v - b) = RT$$

'a' accounts for inter molecular attraction and 'b' the size of atoms

Van der Waals Equation-I

• Van der Waals equation can be rewritten as

9/15

$$p = -\frac{a}{v^2} + \frac{RT}{(v-b)} \qquad \Rightarrow pv = RT \left(1 - \frac{b}{v}\right)^{-1} - \frac{a}{v}$$

• Using binomial theorem, we can expand and write

$$pv = RT + \frac{RTb - a}{v} + RT\left(\frac{b}{v}\right)^{2} + RT\left(\frac{b}{v}\right)^{3} + \dots$$

- The above can be assumed to be a kind of virial expansion expression
- Another way of looking at Van der Waals equation is

Cubic equation

```
pv^3 - (pb + RT)v^2 + av - ab = 0
```

10/15

Van der Waals Equation-II

- We had already noted that Van der Waals equation reduces to ideal gas equation at large v's
- Because of cubic nature, it has 3 roots for v for a given p below a critical pressure
- As v tends to b, the pressure goes very large, thereby mimicking the liquid behaviour

• However, this equation also fails to

predict the real behaviour in the two-

р

This may be easily visualized by plotting the behaviour

11/15 **Van der Waals Equation-III** • It may be noted that there is a point of inflexion at the critical point. Thus $\frac{\partial p}{\partial v}\Big|_{T} = \frac{\partial^{2} p}{\partial v^{2}}\Big|_{T} = 0$ At critical point $\Rightarrow \frac{\partial p}{\partial v}\Big|_{T} = -\frac{RT}{(v-b)^{2}} + \frac{2a}{v^{3}} = 0 \Rightarrow \frac{\partial^{2} p}{\partial v^{2}}\Big|_{T} = \frac{2RT}{(v-b)^{3}} - \frac{6a}{v^{4}} = 0$ • Using T = T_c, p = p_c and v = v_c, we can solve for p_c, v_c and T_c in terms of a and b using the above three relations to give $p_{c} = \frac{a}{27b^{2}}, v_{c} = 3b, T_{c} \frac{8a}{27Rb}$

12/15

Van der Waals Equation-IV

- If we have measured values of p_c, v_c and T_c, we have three equations to determine 2 constants a and b
- The expression for b from second equation and from solving first and third equations are

$$b = \frac{v_c}{3}$$
 and $b = \frac{RT_c}{8p_c}$

- The values of b from the above two equations do not agree
- Elimination of b from the above two equations give the value of $Z_c = 3/8$ or 0.375

Van der Waals Equation-V

13/15

• However, the values of Z_c are reasonably fair and deviates further for heavier gases

Elem	ent Z _c
He	0.327
H_2	0.306
O_2	0.292
CO_2	0.277
H_2O	0.233

• We can generalize the properties by introducing reduced coordinates defined by

$$p_r = \frac{p}{p_c}, v_r = \frac{v}{v_c} and T_r = \frac{T}{T_c}$$

14/15 **Principle of Corresponding States-I** • If we plot the compressibility factor in reduced coordinates with p_r as variable and T_r as a parameter, we get $T_{\rm E} = 2.00$ $T_{\rm E} = 1.50$ There appears $T_{T} = 1.30$ to be universal agreement \$2 Refer any standard Text Meticue Isopentane n-Heptape Nitrogen e based en data 3.5 40 2.0 2.5 3.0 4.5 5.0 5.5 5.0 Reduced pressure Py

^{15/15} **Principle of Corresponding States-II**

- Such plots to compute enthalpy and entropy are also available in standard texts (Van Wylen and Sonntag)
- Vander der Waals equation can also be reduced to and will be done as home work

$$\left(p_{r}+\frac{3}{v_{r}^{2}}\right)(3v_{r}-1)=8T_{r}$$

• There are more accurate empirical equations of state such as Redlich-Kwong, Peng-Robinson, Lee-Kessler equations that have more parameters and predict better. You can refer to standard texts