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Transient Heat Transfer

• Having gotten a feel for the steady state heat transfer, let 

us get a feel for the transient behavior of heat transfer

• To begin with, let us assume that spatial variation of 

temperature is negligible and the temperature of the body 

as a whole changes with time

• This implies that the thermal conductivity is very high.

• We shall evolve a criterion for the validity of this 

assumption as we go along

• Let us look at the steps in analysis

• This type of problem is called lumped analysis

Lumped Analysis-I

• Let the body temperature be denoted 

by T
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T
∞
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• The body interacts with the 

surroundings with the temperature at 

T∞ and heat transfer coefficient h
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• Defining θ = T - T∞, we can write
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• If the object is sphere, we have
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Lumped Analysis-III

• In general
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• If the object is a cylinder of Radius R and Length L, 

we have
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Lumped Analysis-III

• This concept can now be extended to any geometry

• To generalize the result, it is customary to introduce 

the characteristic length L

• The logic suggests that V/A is the most obvious 

choice
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• In the above expression, we have introduced the 

property called thermal diffusivity = k/(ρc)

• The non-dimensional parameter hL/k and αt/L2 are 

called the Biot Number and Fourier No respectively

Lumped Analysis-IV

• Thus, the temperature variation is a function of two 

non dimensional parameters Biot number and Fourier 

number. 

• We will appreciate these parameters, as we go into 

more complex cases

• We can give a physical interpretation for the Biot

number as follows
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• When Bi is very small, it implies that conduction 

resistance is very small and hence lumped analysis valid

• The criterion used is Bi < 0.1
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Transients with spatial effects 

• If Bi > 0.1 spatial effects become important and so 

more complications are involved

• Exact analytical solutions can be obtained using 

separation of variables similar to 2-D steady state 

analysis

• Let us look at 1-D transient analysis in a slab 

geometry with no heat generation

• The governing equation for this case is
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1-D Transient in a Plate-I 
• The governing equation

• Let us define

• Boundary conditions

T(0,x) = Ti ; [∂T/∂x](t,0) = 0; [-k∂T/∂x](t,L) = h(T(t,L)- T∞)
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1-D Transient in a Plate-II
• The solution for θ(t,x) is assumed of the form:

θ(t,x) = X(x)T(t)

• Substituting this in the governing equation, we get
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• Since LHS is only a function of t and RHS is only 
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1-D Transient in a Plate-II
• The solution for X and T are;
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1-D Transient in a Plate-III
• The solution for the eigen values can be 

graphically interpreted as shown

λL

λL/BiCot(λL)
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• Thus we will have infinite 

values of eigen values, but 

these have to be numerically 

determined. Your book 

summarizes the first four 

values as a function of Bi in 

Appendix B3

• Thus the solution for θ can be written as
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1-D Transient in a Plate-IV
• The constants have to be determined from 

initial condition 

• This will be again done by orthogonal functions

• It turns out that 
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Will be given as home work
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1-D Transient in a Plate-V
• The initial condition is  θ(0,x) = θ0
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1-D Transient in a Plate-VI

• Thus the solution for θ can be written as
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Heisler Charts-I

• The solution for θ was shown to be
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• Heisler showed that when Fo > 0.2, just one term is 

adequate to describe the solution
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• The coordinate of the mid-plane is x =0
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• Thus, the spatial profile at any time can be written as
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• Heisler presented these results in the form of two 

graphs, called Heisler Charts

• For Cartesian system, it is shown in the next slide. 

Similar curves for the cylindrical and spherical one 

dimensional cases are given in Appendix D of your 

book

Heisler Charts-III Criterion for Lumped Analysis
• If the variation of temperature within the slab is less 

than 5%, we can call it lumped
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• Thus, Bi should be < 0.1 for lumped analysis to be 

valid. This can also be viewed in the chart
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Energy Storage-I
• As energy storage is one of the main application of 

transient, it is useful to get a method to estimate the 

total energy stored

• From thermodynamics
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Energy Storage-II
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1-D Transient in a Semi-Infinite Plate-I

• Another case of interest in transient heat transfer is 

what is called heat transfer in a Semi-infinite plate

• It is has many useful applications. In fact, all 

transient problems start as semi-infinite wall
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h, T∞

• The governing equation
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• Boundary conditions

T(0,x) = Ti ; T(t,0) = Ts ; T(t,x→∞) = Ti

• Mathematically, problems that have boundary at 

infinity are often solved by a method called similarity 

solution

1-D Transient in a Semi-Infinite Plate-II

• In this method, a new variable, called similarity 

variable is introduced

• There are systematic ways by which this can be 

derived, but often involves some qualitative 

arguments

• Thus the governing equation will be transformed into 

an ODE from PDE

• This variable is chosen such that T becomes a 

function of only this variable
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1-D Transient in a Semi-Infinite Plate-III
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1-D Transient in a Semi-Infinite Plate-IV

• Substituting for the partial derivatives in the heat 

equation, we get
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• Thus we get an ODE in η

• The boundary conditions

T(t,0) = Ts T(η = 0) = Ts

T(0,x) = Ti ; T(t,x→∞) = Ti T(η = ∞) = Ti
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1-D Transient in a Semi-Infinite Plate-V
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⇒=

η

+
+

d

dT

d

Td
T

d

dT
2

2

• To get the solution, we make the transformation

• The equation in the new variables can be written as
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• The integral occurs very frequently in physics

• Though not integrable in explicit form, it has been 

integrated with series expansion and tables have been 

constructed under what is called Error Function
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Appendix B of your 

book

x=3 is as good as ∞

Erf(3) = 0.99998
• A complimentary error function 

is also defined as
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Error function can be computed by using the fact that 

1-D Transient in a Semi-Infinite Plate-VI
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• The Boundary condition, T(η=0) = Ts implies
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1-D Transient in a Semi-Infinite Plate-VII

• For η = 1.82, θ=0.99; This implies that η = 1.82 

is for all practical purposes is ∞
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t64.3x α=⇒

• The above numbers can be interpreted in the 

following manner

• x > 3.64 (αt)0.5 can be considered as infinitely thick

• Similarly for t < x2/(13.25 α), the plate can be 

considered infinite

• Now we will turn our attention to heat transferred
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1-D Transient in a Semi-Infinite Plate-VIII
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• Solutions are available for other boundary conditions and 

are summarized in your book
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Application-I

• Semi-infinite wall finds lots of applications, such as 

bubble growth, vapor explosion etc.

• In vapor explosion, analysis liquid metal drops falling 

in  relatively cold water is required

• This can be idealized by two semi-infinite slabs 

brought into intimate contact

• We shall see the gist by trying to calculate what is 

known as the contact temperature

T1

T2

Application-II

• At the instant they come in contact, thermal 

equilibrium would dictate that the contact temperature 

Ts would lie in between T1 and T2

• If the contact temperature remains same, thermal 

equilibrium demands that the heat flux from one face 

should be equal to the heat flux from the other face.

• The solution on the two slabs can now be worked 

similar to what we have obtained with T1 and T2

similar to Ti
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Application-III

• Since heat flux coming out from 1 will be getting into 

the other, 
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• Rearranging, we get
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Finite Difference Method - I

• We found that analytical methods are complex

• These methods are restrictive and are applicable for 

simple boundary conditions

• Numerical methods are easy to implement and we can 

obtain results quickly

• We will see the gist of the method
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t

x

Computational
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Finite Difference Method - II

Governing Equation:
2

2

x

T

t

T

∂

∂
α=

∂
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∂ • One of the FDM approximation is
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• This leads to the nodal equation
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+=

Finite Difference Method - III

• This method is called explicit method, as the 

values at Ti
n+1 are readily obtained explicitly, once 

the initial and boundary conditions are known 
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Finite Difference Method - IV

• This method suffers from a disadvantage that the 

time step ∆t < 0.5α∆t/∆x2

• This is called stability limit. This occurs due to 

explosion of errors above the limit

• If we need more accurate results, we need more 

nodes, and this implies small ∆x. This will limt ∆t 

to be small and takes more computational time

• This can be overcome by choosing a different 

method called implicit method

Finite Difference Method - V

t

TT

t

T n

i

1n

i

n

i ∆

−
=

∂

∂ +

2

1n
1i

1n
i

1n
1i

n

i

2

2

x

TT2T

x

T

∆

+−
=

∂

∂ +
−

++
+

• This leads to the nodal equation

n
i2

1n
1i2

1n
i2

1n
1i T

x

t
T

x

t2
1T

x

t
T =









∆

∆α
−+









∆

∆α
++









∆

∆α
− +

−
++

+

2

1n
1i

1n
i

1n
1i

n
i

1n
i

x

TT2T

t

TT

∆

+−
α=

∆

− +
−

++
+

+

Implicit Method

Finite Difference Method - VI

• For the simple case of boundary temperature 

known





























=

























































∆

∆α
−

∆

∆α
+

∆

∆α
−

∆

∆α
−

∆

∆α
+

∆

∆α
−

∆

∆α
−

∆

∆α
+

∆

∆α
−

+

+

+

+

+

+

+

1n
5

n
4

n
3

n
3

1n
1

1n
5

1n
4

1n
3

1n
2

1n
1

222

222

222

T

T

T

T

T

T

T

T

T

T

10
x

t

x

t2
1

x

t
x

t

x

t2
1

x

t
x

t

x

t2
1

x

t

01

n+1

n
2 3 4 51

• The matrix can be inverted in Matlab or any other software


