Transient Heat Transfer

- Having gotten a feel for the steady state heat transfer, let us get a feel for the transient behavior of heat transfer
- To begin with, let us assume that spatial variation of temperature is negligible and the temperature of the body as a whole changes with time
- This implies that the thermal conductivity is very high.
- This type of problem is called lumped analysis
- We shall evolve a criterion for the validity of this assumption as we go along
- Let us look at the steps in analysis

Lumped Analysis-I

- Let the body temperature be denoted by T
- The body interacts with the surroundings with the temperature at T_∞ and heat transfer coefficient h
- First law implies that $\dot{E} = \dot{Q} \dot{W}$

$$\Rightarrow \frac{d}{dt} (mcT) = -hA(T - T_{\infty})$$

· For constant specific heat

$$\Rightarrow mc \frac{dT}{dt} = -hA(T - T_{\infty})$$

Lumped Analysis-II

• Defining $\theta = T - T_{\infty}$, we can write

$$\Rightarrow mc \frac{d\theta}{dt} = -hA\theta \quad \Rightarrow \frac{d\theta}{dt} = -\frac{hA}{mc}\theta \quad \text{Let } \theta = \theta_o \text{ at } t = 0$$

• The solution for the above equation is

$$\theta = \theta_0 e^{-\frac{hA}{mc}t}$$

• If the object is sphere, we have

$$m = \frac{4}{3}\pi R^{3}\rho; \quad A = 4\pi R^{2} \quad \Rightarrow \frac{hA}{mc} = \frac{h}{c} \frac{4\pi R^{2}}{\frac{4}{3}\pi R^{3}\rho} = \frac{h}{\rho c} \frac{3}{R}$$
$$\theta = \theta_{0}e^{-\frac{h}{\rho c}\frac{3}{R}t}$$

Lumped Analysis-III

- $\bullet \ \ \text{In general} \quad \ \theta = \theta_0 e^{-\frac{hA}{mc}t} = \theta_0 e^{-\frac{hA}{V\rho c}t} = \theta_0 e^{-\frac{h}{\rho c}\frac{A}{V}t}$
- If the object is a cylinder of Radius R and Length L, we have

$$\Rightarrow \frac{A}{V} = \frac{2\pi RL + 2\pi R^2}{\pi R^2 L} = \frac{2(L+R)}{RL}$$

• If the cylinder has L>>R, then

$$\theta = \theta_0 e^{-\frac{h}{\rho c} \frac{2}{R} t}$$

Lumped Analysis-III

- This concept can now be extended to any geometry
- To generalize the result, it is customary to introduce the characteristic length L
- The logic suggests that V/A is the most obvious choice

$$\Rightarrow \theta = \theta_0 e^{-\frac{h}{\rho c L}t} = \theta_0 e^{-\frac{hL}{k}\frac{L}{\rho c L^2}t} = \theta_0 e^{-\frac{hL}{k}\frac{\alpha t}{L^2}}$$

- In the above expression, we have introduced the property called thermal diffusivity = k/(ρc)
- The non-dimensional parameter hL/k and αt/L² are called the Biot Number and Fourier No respectively

Lumped Analysis-IV

- Thus, the temperature variation is a function of two non dimensional parameters Biot number and Fourier number.
- We will appreciate these parameters, as we go into more complex cases
- We can give a physical interpretation for the Biot number as follows

$$Bi = \frac{hL}{K} = \frac{L}{KA} \frac{hA}{1} = \frac{\text{conduction Re sis tan ce}}{\text{convection Re sis tan ce}}$$

- When Bi is very small, it implies that conduction resistance is very small and hence lumped analysis valid
- The criterion used is Bi < 0.1

Transients with spatial effects

- If Bi > 0.1 spatial effects become important and so more complications are involved
- Exact analytical solutions can be obtained using separation of variables similar to 2-D steady state analysis
- Let us look at 1-D transient analysis in a slab geometry with no heat generation
- The governing equation for this case is

$$\rho c \frac{\partial (T)}{\partial t} = k \left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} + \frac{\partial^2 T}{\partial z^2} \right) + q^{2} \qquad \Rightarrow \frac{1}{\alpha} \frac{\partial T}{\partial t} = \frac{\partial^2 T}{\partial x^2}$$

1-D Transient in a Plate-I

• The governing equation

$$\frac{1}{\alpha} \frac{\partial T}{\partial t} = \frac{\partial^2 T}{\partial x^2} \quad 0 \le x \le L; \ 0 \le t$$

· Boundary conditions

 $T(0,x) = T_i$; $[\partial T/\partial x](t,0) = 0$; $[-k\partial T/\partial x](t,L) = h(T(t,L) - T_{\infty})$

• Let us define $\theta = T - T_{\infty}$

$$\Rightarrow \frac{1}{\alpha} \frac{\partial \theta}{\partial t} = \frac{\partial^2 \theta}{\partial x^2}$$

 $0 \le x \le L; 0 \le t$

$$\begin{split} [\partial\theta/\partial x](t,0) &= 0; -k[\partial\theta/\partial x](t,L) = &h\theta(t,L); \\ \theta(0,x) &= \theta_0 \end{split}$$

1-D Transient in a Plate-II

• The solution for $\theta(t,x)$ is assumed of the form:

$$\theta(t,x) = X(x)T(t)$$

• Substituting this in the governing equation, we get

$$\Rightarrow X(x)\frac{1}{\alpha}\frac{dT(t)}{dt} = T(t)\frac{d^2X(x)}{dx^2} = 0 \qquad \Rightarrow \frac{1}{\alpha}\frac{1}{T}\frac{dT}{dt} = \frac{1}{X}\frac{d^2X}{dx^2}$$

 Since LHS is only a function of t and RHS is only a function of x and yet they be equal, would require that both sides be equal to a constant

$$\Rightarrow \frac{1}{\alpha} \frac{1}{T} \frac{dT}{dt} = \frac{1}{X} \frac{d^2X}{dx^2} = -\lambda^2 \quad \Rightarrow \frac{d^2X}{dx^2} + \lambda^2X = 0; \quad \frac{dT}{dt} - \alpha\lambda^2T = 0$$

1-D Transient in a Plate-II

• The solution for X and T are;

$$\begin{split} X &= C_1 \cos(\lambda x) + C_2 \sin(\lambda x) & T = C_3 e^{-\alpha \lambda^2 t} \\ \Rightarrow \theta &= XT = \left(C_1 \cos(\lambda x) + C_2 \sin(\lambda x) \right) \left(C_3 e^{-\alpha \lambda^2 t} \right) \\ &= \left(C_1 \cos(\lambda x) + C_2 \sin(\lambda x) \right) \left(e^{-\alpha \lambda^2 t} \right) \end{split}$$

$$C_3 \text{ is absorbed in } C_1 \text{ and } C_2$$

• The BC at x = 0; $\partial \theta / \partial x = 0$, requires a symmetric solution and hence $C_2 = 0$

$$\Rightarrow \theta = \left(C_1 \cos(\lambda x)\right) \left| e^{-\alpha \lambda^2 t} \right) \Rightarrow \frac{\partial \theta}{\partial x} = \left(C_1 \lambda (-\sin(\lambda x))\right) \left| e^{-\alpha \lambda^2 t} \right|$$

$$BC \text{ at } x = L \Rightarrow \left(-kC_1^*(-\lambda)\sin(\lambda L)\right) \left| e^{-\alpha \lambda^2 t} \right| = h\left(C_1^*\cos(\lambda L)\right) \left| e^{-\alpha \lambda^2 t} \right|$$

$$\Rightarrow \left(\lambda \sin(\lambda L)\right) = \frac{h}{k} \left(\cos(\lambda L)\right) \Rightarrow \cot(\lambda L) = \frac{k\lambda}{h} = \frac{\lambda L}{Bi}$$

1-D Transient in a Plate-III

- The solution for the eigen values can be graphically interpreted as shown
- Thus we will have infinite values of eigen values, but these have to be numerically determined. Your book summarizes the first four values as a function of Bi in Appendix B3

• Thus the solution for θ can be written as

$$\Rightarrow \theta = \sum_{n=1}^{\infty} C_n e^{-\alpha \lambda_n^2 t} \cos(\lambda_n x)$$

Still C_n needs to be determined

1-D Transient in a Plate-IV

- The constants have to be determined from initial condition
- · This will be again done by orthogonal functions
- It turns out that

$$\int_{0}^{L} \cos(\lambda_{n}x)\cos(\lambda_{m}x)dx = 0$$
 for $n \neq m$ Messy to prove

Will be given as home work

$$\begin{split} \int\limits_{0}^{L} \cos^{2}(\lambda_{n}x) dx &= \frac{\lambda_{n}L + sin(\lambda_{n}L) cos(\lambda_{n}L)}{2\lambda_{n}} \\ &\int\limits_{0}^{L} cos(\lambda_{n}x) dx = \frac{sin(\lambda_{n}L)}{\lambda_{n}} \end{split}$$

1-D Transient in a Plate-V

• The initial condition is $\theta(0,x) = \theta_0$

$$\Rightarrow \theta_0 = \sum_{n=1}^{\infty} C_n \cos(\lambda_n x)$$

$$\int_{0}^{L} \theta_{0} \cos(\lambda_{m} x) dx = \int_{0}^{L} \sum_{n=1}^{\infty} C_{n} \cos(\lambda_{m} x) \cos(\lambda_{n} x) dx$$

• Note that in the RHS, only term n=m will survive

$$\int_{0}^{L} \theta_{0} \cos(\lambda_{n} x) dx = C_{n} \int_{0}^{L} \cos^{2}(\lambda_{n} x) dx$$

$$\begin{split} & \int\limits_{0}^{L} \theta_{0} \cos(\lambda_{n}x) dx = C_{n} \int\limits_{0}^{L} \cos^{2}(\lambda_{n}x) dx \\ \theta_{0} \frac{\sin(\lambda_{n}L)}{\lambda_{n}} = C_{n} \frac{\lambda_{n}L + \sin(\lambda_{n}L) \cos(\lambda_{n}L)}{2\lambda_{n}} \\ & \therefore C_{n} = \theta_{0} \frac{2\sin(\lambda_{n}L)}{\lambda_{n}L + \sin(\lambda_{n}L) \cos(\lambda_{n}L)} \end{split}$$

1-D Transient in a Plate-VI

• Thus the solution for θ can be written as

$$\begin{split} &\Rightarrow \frac{\theta}{\theta_0} = 2 \sum_{n=1}^{\infty} \frac{\sin(\lambda_n L)}{\lambda_n L + \sin(\lambda_n L) \cos(\lambda_n L)} e^{-\alpha \lambda_n^2 t} \cos(\lambda_n x) \\ &\Rightarrow \frac{\theta}{\theta_0} = 2 \sum_{n=1}^{\infty} \frac{\sin(\lambda_n L)}{\lambda_n L + \sin(\lambda_n L) \cos(\lambda_n L)} e^{-\alpha \lambda_n^2 t} \cos(\lambda_n L \frac{x}{L}) \end{split}$$

$$\Rightarrow \frac{\theta}{\theta_0} = 2\sum_{n=1}^{\infty} \frac{\sin(\lambda_n L)}{\lambda_n L + \sin(\lambda_n L)\cos(\lambda_n L)} e^{-\alpha \lambda_n^2 t} \cos(\lambda_n L \frac{x}{L})$$

$$\Rightarrow \frac{\theta}{\theta_0} = f\left(\lambda_n L, \frac{\alpha t}{L^2}, \frac{x}{L}\right)$$

• But, $\lambda_n L$ is determined by Bi

$$\therefore \frac{\theta}{\theta_0} = f\left(Bi, \frac{\alpha t}{L^2}, \frac{x}{L}\right) = f\left(Bi, Fo, \frac{x}{L}\right)$$

Heisler Charts-I

• The solution for θ was shown to be

$$\Rightarrow \frac{\theta}{\theta_0} = 2\sum_{n=1}^{\infty} \frac{\sin(\lambda_n L)}{\lambda_n L + \sin(\lambda_n L)\cos(\lambda_n L)} e^{-\alpha \lambda_n^2 t} \cos(\lambda_n x)$$

$$\frac{\theta}{\theta_0} = f\!\left(Bi, \frac{\alpha t}{L^2}, \frac{x}{L}\right) = f\!\left(Bi, Fo, \frac{x}{L}\right)$$

• Heisler showed that when Fo > 0.2, just one term is adequate to describe the solution

$$\Rightarrow \frac{\theta}{\theta_0} = C_1 e^{-\alpha \lambda_1^2 t} \cos(\lambda_1 x) \text{ Where } C_1 = 2 \frac{\sin(\lambda_1 L)}{\lambda_1 L + \sin(\lambda_1 L) \cos(\lambda_1 L)}$$

Heisler Charts-II

• The coordinate of the mid-plane is x = 0

$$\Rightarrow \frac{\theta(0)}{\theta_0} = C_1 e^{-\alpha \lambda_1^2 t} = C_1 e^{-(\lambda_1 L)^2 Fo} = f(Fo, \lambda_1 L) = f(Fo, Bi)$$

• Thus, the spatial profile at any time can be written as

$$\Rightarrow \frac{\theta}{\theta(0)} = \cos(\lambda_1 x) = f(\lambda_1 L, x/L) = f(Bi, x/L)$$

- Heisler presented these results in the form of two graphs, called Heisler Charts
- · For Cartesian system, it is shown in the next slide. Similar curves for the cylindrical and spherical one dimensional cases are given in Appendix D of your

Criterion for Lumped Analysis

• If the variation of temperature within the slab is less than 5%, we can call it lumped

$$\Rightarrow \frac{\theta(x=L)}{\theta(0)} = \cos(\lambda_1 L) = 0.95 \qquad \Rightarrow \lambda_1 L = 0.318 \text{ radian}$$
$$\Rightarrow Bi = \frac{\lambda_1 L}{\cot(\lambda_1 L)} = 0.1$$

• Thus, Bi should be < 0.1 for lumped analysis to be valid. This can also be viewed in the chart

Energy Storage-I

$$\theta = \theta_0 C_1 e^{-\alpha \lambda_1^2 t} \cos(\lambda_1 x)$$

- As energy storage is one of the main application of transient, it is useful to get a method to estimate the total energy stored
- · From thermodynamics

$$\begin{split} \Delta E &= 2 \int\limits_0^L \rho A c (T-T_0) dx = 2 \rho A c L \frac{1}{L} \int\limits_0^L (\theta-\theta_0) dx \\ &= 2 \rho A c L \theta_0 \frac{1}{L} \int\limits_0^L (C_1 e^{-\alpha \lambda_1^2 t} \cos(\lambda_1 x) - 1) dx \\ \frac{\Delta E}{2 \rho A c L \theta_0} &= \frac{1}{L} \left(C_1 e^{-\alpha \lambda_1^2 t} \frac{\sin(\lambda_1 x)}{\lambda_1} - x \right)_0^L \\ \frac{\Delta E}{\Delta E_0} &= \left(C_1 e^{-\alpha \lambda_1^2 t} \frac{\sin(\lambda_1 L)}{\lambda_1 L} - 1 \right) = \left(\theta(0) \frac{\sin(\lambda_1 L)}{\lambda_1 L} - 1 \right) \end{split}$$

Energy Storage-II
$$\frac{\Delta E}{\Delta E_0} = \left(\theta(0) \frac{\sin(\lambda_1 L)}{\lambda_1 L} - 1\right) = f(\lambda_1 L, Fo) = f(Bi, Fo)$$

1-D Transient in a Semi-Infinite Plate-I

- Another case of interest in transient heat transfer is what is called heat transfer in a Semi-infinite plate
- It is has many useful applications. In fact, all transient problems start as semi-infinite wall
- The governing equation

$$\frac{1}{\alpha} \frac{\partial T}{\partial t} = \frac{\partial^2 T}{\partial x^2} \quad 0 \le x \le \infty; \ 0 \le t$$

· Boundary conditions

$$T(0,x) = T_i$$
; $T(t,0) = T_s$; $T(t,x \rightarrow \infty) = T_i$

1-D Transient in a Semi-Infinite Plate-II

- Mathematically, problems that have boundary at infinity are often solved by a method called similarity solution
- In this method, a new variable, called similarity variable is introduced
- This variable is chosen such that T becomes a function of only this variable
- Thus the governing equation will be transformed into an ODE from PDE
- There are systematic ways by which this can be derived, but often involves some qualitative arguments

1-D Transient in a Semi-Infinite Plate-III

• In this course we shall give you the form of the variable. Note that it will be a combination of x and t

$$\eta = \frac{x}{(4\alpha t)^{0.5}} \quad \Rightarrow \frac{\partial \eta}{\partial x} = \frac{1}{(4\alpha t)^{0.5}} \quad , \frac{\partial \eta}{\partial t} = \frac{x}{(4\alpha)^{0.5}} \frac{-0.5}{t^{1.5}}$$

· Using chain rule

$$\frac{\partial T}{\partial x} = \frac{dT}{d\eta} \frac{\partial \eta}{\partial x} = \frac{dT}{d\eta} \frac{1}{(4\alpha t)^{0.5}}$$

$$\frac{\partial^{2} T}{\partial x^{2}} = \frac{\partial}{\partial x} \left(\frac{\partial T}{\partial x} \right) = \frac{\partial}{\partial x} \left(\frac{dT}{d\eta} \frac{1}{(4\alpha t)^{0.5}} \right) = \frac{d^{2} T}{d\eta^{2}} \frac{\partial \eta}{\partial x} \frac{1}{(4\alpha t)^{0.5}} = \frac{d^{2} T}{d\eta^{2}} \frac{1}{(4\alpha t)}$$

$$\frac{\partial T}{\partial t} = \frac{dT}{d\eta} \frac{\partial \eta}{\partial t} = \frac{dT}{d\eta} \frac{x}{(4\alpha)^{0.5}} \frac{-0.5}{(t)^{1.5}} = \frac{dT}{d\eta} \frac{-x}{2t(4\alpha t)^{0.5}}$$

1-D Transient in a Semi-Infinite Plate-IV

• Substituting for the partial derivatives in the heat equation, we get

$$\begin{split} &\frac{1}{\alpha}\frac{dT}{d\eta}\frac{-x}{2t(4\alpha t)^{0.5}} = \frac{d^2T}{d\eta^2}\frac{1}{(4\alpha t)}\\ \Rightarrow &\frac{d^2T}{d\eta^2} = \frac{1}{\alpha}\frac{dT}{d\eta}\frac{-x(4\alpha t)}{2t(4\alpha t)^{0.5}} = -\frac{dT}{d\eta}2\eta \end{split}$$

• Thus we get an ODE in η

$$\frac{\mathrm{d}^2 \mathrm{T}}{\mathrm{d}\eta^2} = -2\eta \frac{\mathrm{d}\mathrm{T}}{\mathrm{d}\eta}$$

• The boundary conditions

 $T(t,0) = T_s \implies T(\eta = 0) = T_s$

 $T(0,x) = T_i$; $T(t,x \rightarrow \infty) = T_i \Rightarrow T(\eta = \infty) = T_i$

1-D Transient in a Semi-Infinite Plate-V

- The governing equation is $\frac{d^2T}{dn^2} = -2\eta \frac{dT}{d\eta}$
- · To get the solution, we make the transformation

$$\frac{dT}{d\eta} = T^+ \Rightarrow \frac{d^2T}{d\eta^2} = \frac{dT^+}{d\eta}$$

• The equation in the new variables can be written as

$$\frac{dT^+}{d\eta} = -2\eta T^+ \qquad \Rightarrow \frac{dT^+}{T^+} = -2\eta d\eta$$

• Integration gives
$$\ln(T^+) = -\eta^2 + C$$
 $\Rightarrow T^+ = C_1 e^{-\eta^2}$
 $\Rightarrow \frac{dT}{d\eta} = C_1 e^{-\eta^2} \Rightarrow T = C_1 \int_0^{\eta} e^{-\eta^2} d\eta + C_2 = C_1 \int_0^{\eta} e^{-u^2} du + C_2$ us a dummy variable

Error Function

- The integral $\int\limits_{0}^{\eta}e^{-u^{2}}du$ occurs very frequently in physics
- Though not integrable in explicit form, it has been integrated with series expansion and tables have been constructed under what is called Error Function

$$\operatorname{erf}(x) = \frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-u^{2}} du$$

- It turns out that $\int_{0}^{\infty} e^{-u^2} du = \frac{\sqrt{\pi}}{2}$
- Hence $\operatorname{erf}(\infty)=1$, $\operatorname{erf}(0)=0$
- A complimentary error function is also defined as

erf(x) is tabulated in

Appendix B of your

x=3 is as good as ∞

Erf(3) = 0.99998

$\operatorname{erfc}(\mathbf{x}) = 1 - \operatorname{erf}(\mathbf{x})$

Integration

Consider
$$I = \int_{0}^{\infty} \int_{0}^{\infty} e^{-(x^2+y^2)} dxdy = \int_{0}^{\infty} \int_{0}^{2\pi} e^{-(r^2)} r dr d\theta$$

Put
$$r^2 = t$$
 $\Rightarrow I = \int_{0}^{\infty} \int_{0}^{2\pi} e^{-t} \frac{dt}{2} d\theta = \frac{2\pi}{2} \left(-e^{-t} \Big|_{0}^{\infty} \right) = \pi$

$$I = \int_{-\infty}^{\infty} e^{-x^2} dx \int_{-\infty}^{\infty} e^{-y^2} dy = 4I_1^2$$
, where $I_1 = \int_{0}^{\infty} e^{-x^2} dx$

From above
$$4I_1^2 = \pi$$
 or $I_1 = \frac{\sqrt{\pi}}{2}$

$$e^{-x^2} = 1 - x^2 + \frac{x^4}{2!} - \frac{x^6}{3!} + \frac{x^8}{4!} + ...$$

1-D Transient in a Semi-Infinite Plate-VI

- The solution $T = C_1 \int_{0}^{\eta} e^{-u^2} du + C_2 = C_1 \frac{\sqrt{\pi}}{2} erf(\eta) + C_2$
- The Boundary condition, $T(\eta=0) = T_s$ implies $T_s = C_1 \frac{\sqrt{\pi}}{2} \operatorname{erf}(0) + C_2$ $\Rightarrow C_2 = T_s$
- The Boundary condition, $T(\eta=\infty) = T_i$ implies

$$T_{i} = C_{1} \frac{\sqrt{\pi}}{2} \operatorname{erf}(\infty) + T_{s} \quad T_{i} = C_{1} \frac{\sqrt{\pi}}{2} + T_{s} \quad \Longrightarrow C_{1} = (T_{i} - T_{s}) \frac{2}{\sqrt{\pi}}$$

 $\therefore T = (T_i - T_s) \operatorname{erf}(\eta) + T_s$

$$\Rightarrow \frac{T - T_s}{(T_s - T_s)} = erf(\eta) = \theta$$

1-D Transient in a Semi-Infinite Plate-VII

• For $\eta = 1.82$, $\theta = 0.99$; This implies that $\eta = 1.82$ is for all practical purposes is ∞

$$\eta = 1.82 \Rightarrow \frac{x}{(4\alpha t)^{0.5}} = 1.82 \Rightarrow x = 3.64(\alpha t)^{0.5}$$

- The above numbers can be interpreted in the following manner
- $x > 3.64 (\alpha t)^{0.5}$ can be considered as infinitely thick
- Similarly for $t < x^2/(13.25 \alpha)$, the plate can be considered infinite
- Now we will turn our attention to heat transferred

1-D Transient in a Semi-Infinite Plate-VIII

$$q'' = -k \frac{\partial T}{\partial x} \bigg|_{x=0} = -k \frac{dT}{d\eta} \bigg|_{\eta=0} \frac{1}{(4\alpha t)^{0.5}}$$

• We had shown that $\frac{dT}{d\eta} = C_1 e^{-\eta^2}$ $\Rightarrow \frac{dT}{d\eta} = C_1 = (T_i - T_s) \frac{2}{\sqrt{\eta}}$

$$\therefore q'' = -k \frac{(T_i - T_s)}{(4\alpha t)^{0.5}} \frac{2}{\sqrt{\pi}} = -k \frac{(T_s - T_i)}{(\pi \alpha t)^{0.5}}$$

· Solutions are available for other boundary conditions and are summarized in your book

Application-I

- · Semi-infinite wall finds lots of applications, such as bubble growth, vapor explosion etc.
- · In vapor explosion, analysis liquid metal drops falling in relatively cold water is required
- This can be idealized by two semi-infinite slabs brought into intimate contact
- We shall see the gist by trying to calculate what is known as the contact temperature

Application-II

- · At the instant they come in contact, thermal equilibrium would dictate that the contact temperature T_s would lie in between T_1 and T_2
- · If the contact temperature remains same, thermal equilibrium demands that the heat flux from one face should be equal to the heat flux from the other face.
- The solution on the two slabs can now be worked similar to what we have obtained with T_1 and T_2 similar to T_i

$$\therefore q_1'' = -k_1 \frac{\left(T_s - T_1\right)}{\left(\pi \alpha_1 t\right)^{0.5}} \quad \text{ and } \quad q_2'' = -k_{21} \frac{\left(T_s - T_2\right)}{\left(\pi \alpha_2 t\right)^{0.5}}$$

Application-III

· Since heat flux coming out from 1 will be getting into the other,

ne otner,

$$\Rightarrow q_1'' = -q_2'' \qquad \Rightarrow -k_1 \frac{\left(T_s - T_1\right)}{\left(\pi \alpha_1 t\right)^{0.5}} = k_2 \frac{\left(T_s - T_2\right)}{\left(\pi \alpha_2 t\right)^{0.5}}$$

$$\Rightarrow \frac{\left(T_{1} - T_{s}\right)}{\left(T_{s} - T_{2}\right)} = \frac{k_{2}}{k_{1}} \frac{\alpha_{1}^{0.5}}{\alpha_{2}^{0.5}} = \frac{\left(k_{2}\rho_{2}c_{2}\right)^{0.5}}{\left(k_{1}\rho_{1}c_{1}\right)^{0.5}}$$

• Rearranging, we get

$$T_S == \frac{T_1 (k_1 \rho_1 c_1)^{0.5} + T_2 (k_2 \rho_2 c_2)^{0.5}}{(k_1 \rho_1 c_1)^{0.5} + (k_2 \rho_2 c_2)^{0.5}}$$

Finite Difference Method - I

- We found that analytical methods are complex
- These methods are restrictive and are applicable for simple boundary conditions
- Numerical methods are easy to implement and we can obtain results quickly
- · We will see the gist of the method

Finite Difference Method - II

Governing Equation:

$$\frac{\partial T}{\partial t} = \alpha \frac{\partial^2 T}{\partial x^2}$$

Physical Domain:

Computational

Finite Difference Method - III

• One of the FDM approximation is

$$\left. \frac{\partial \mathbf{T}}{\partial t} \right|_{i}^{n} = \frac{\mathbf{T}_{i}^{n+1} - \mathbf{T}_{i}^{n}}{\Delta t}$$

$$\left. \frac{\partial^{2} T}{\partial x^{2}} \right|_{i}^{n} = \frac{T_{i+1}^{n} - 2T_{i}^{n} + T_{i-1}^{n}}{\Delta x^{2}}$$

• This leads to the nodal equation

$$T_{i}^{n+1} = T_{i}^{n} + \frac{\alpha \Delta t}{\Delta x^{2}} (T_{i+1}^{n} - 2T_{i}^{n} + T_{i-1}^{n})$$

· This method is called explicit method, as the values at T_iⁿ⁺¹ are readily obtained explicitly, once the initial and boundary conditions are known

Finite Difference Method - IV

- This method suffers from a disadvantage that the time step $\Delta t < 0.5\alpha \Delta t/\Delta x^2$
- This is called stability limit. This occurs due to explosion of errors above the limit
- If we need more accurate results, we need more nodes, and this implies small Δx . This will limt Δt to be small and takes more computational time
- This can be overcome by choosing a different method called implicit method

Finite Difference Method - V

Implicit Method

$$\left.\frac{\partial T}{\partial t}\right|_{i}^{n}=\frac{T_{i}^{n+1}-T_{i}^{n}}{\Delta t} - \left.\frac{\partial^{2}T}{\partial x^{2}}\right|_{i}^{n}=\frac{T_{i+1}^{n+1}-2T_{i}^{n+1}+T_{i-1}^{n+1}}{\Delta x^{2}}$$

• This leads to the nodal equation

$$\frac{T_{i}^{n+1}-T_{i}^{n}}{\Delta t}=\alpha\frac{T_{i+1}^{n+1}-2T_{i}^{n+1}+T_{i-1}^{n+1}}{\Delta x^{2}}$$

$$T_{i+1}^{n+1}\!\!\left(\!-\frac{\alpha\Delta t}{\Delta x^2}\right)\!+T_i^{n+1}\!\!\left(1\!+\!\frac{2\alpha\Delta t}{\Delta x^2}\right)\!+T_{i-1}^{n+1}\!\!\left(\!-\frac{\alpha\Delta t}{\Delta x^2}\right)\!=T_i^{n+1}\!\!\left(\!-\frac{\alpha\Delta t}{\Delta x^2}\right)\!=\!T_i^{n+1}\!\!\left(\!-\frac{\alpha\Delta t}{\Delta x^2}\right)\!\!=\!T_i^{n+1}\!\!\left(\!-\frac{\alpha\Delta t}{\Delta x^2}\right)\!\!=\!T_i^{n+1}\!$$

Finite Difference Method - VI

• For the simple case of boundary temperature known

$$\begin{bmatrix} 1 & 0 \\ -\frac{\alpha \Delta t}{\Delta x^2} & 1 + \frac{2\alpha \Delta t}{\Delta x^2} & -\frac{\alpha \Delta t}{\Delta x^2} \\ -\frac{\alpha \Delta t}{\Delta x^2} & 1 + \frac{2\alpha \Delta t}{\Delta x^2} & -\frac{\alpha \Delta t}{\Delta x^2} \\ -\frac{\alpha \Delta t}{\Delta x^2} & 1 + \frac{2\alpha \Delta t}{\Delta x^2} & -\frac{\alpha \Delta t}{\Delta x^2} \\ -\frac{\alpha \Delta t}{\Delta x^2} & 1 + \frac{2\alpha \Delta t}{\Delta x^2} & -\frac{\alpha \Delta t}{\Delta x^2} \\ \end{bmatrix} \begin{bmatrix} T_1^{n+1} \\ T_2^{n+1} \\ T_3^{n+1} \\ T_4^{n+1} \\ T_5^{n+1} \end{bmatrix} = \begin{bmatrix} T_1^{n+1} \\ T_3^{n} \\ T_4^{n} \\ T_5^{n+1} \end{bmatrix}$$

• The matrix can be inverted in Matlab or any other software