Transient Heat Transfer

Having gotten a feel for the steady state heat transfer, let
us get a feel for the transient behavior of heat transfer

To begin with, let us assume that spatial variation of
temperature is negligible and the temperature of the body
as a whole changes with time

This implies that the thermal conductivity is very high.
This type of problem is called lumped analysis

We shall evolve a criterion for the validity of this
assumption as we go along

Let us look at the steps in analysis

Lumped Analysis-I

Let the body temperature be denoted

by T T
The body interacts with the
surroundings with the temperature at

T, and heat transfer coefficient h

h

o9

First law implies that E=Q- \}&
= i(ch): —hA(T-T,)
dt
For constant specific heat

= mcd—T =-hA(T-T,)
dt

Lumped Analysis-II

¢ Defining 6 =T - T,,, we can write

do hA
3mC‘Le:_hAe =>—=——0 Letf=0,att=0
dt dt mc

* The solution for the above equation is

hA

0=y ™

« If the object is sphere, we have

hA h 47R*> h 3
= —=— =

m:inR3p; A=47R> =
3 mc ¢ i‘n:Rsp pc R
h3 3

t
0=0ye "R

Lumped Analysis-III
iy na hA,
e Ingeneral 6=6p ™ =0, P =f,c ™V

 If the object is a cylinder of Radius R and Length L,

we have
A _2nRL+2nR? _2(L+R)

\% TR2L RL

_12(L+R)l
0=0,e P =X

e If the cylinder has L>>R , then

h 2
t

=0, PR

Lumped Analysis-II1

This concept can now be extended to any geometry

To generalize the result, it is customary to introduce
the characteristic length L

The logic suggests that V/A is the most obvious
choice
h hL_k hL ot

b, h ko «
=0=0pc "L =0,c FPL =g KL

In the above expression, we have introduced the
property called thermal diffusivity = k/(pc)

The non-dimensional parameter hL/k and at/L2 are
called the Biot Number and Fourier No respectively

Lumped Analysis-IV

¢ Thus, the temperature variation is a function of two

non dimensional parameters Biot number and Fourier
number.

* We will appreciate these parameters, as we go into

more complex cases

* We can give a physical interpretation for the Biot

number as follows
Bi= hL L hA _ conduction Resistance

K KA 1  convection Resis tance

* When Bi is very small, it implies that conduction

resistance is very small and hence lumped analysis valid

e The criterion used is Bi < 0.1




Transients with spatial effects

» If Bi> 0.1 spatial effects become important and so
more complications are involved

» Exact analytical solutions can be obtained using
separation of variables similar to 2-D steady state
analysis

¢ Let us look at 1-D transient analysis in a slab
geometry with no heat generation

* The governing equation for this case is

2 2 2 2
pc@:k a—T+a +a + :»lalzai
ot ox?  By* Bz* o dt  ox>2

1-D Transient in a Plate-I
* The governing equation
2
é%:g% 0<x<L;0<t hT hT

¢ Boundary conditions
L

0
T(0.x) = T, ; [0T/0x](1,0) = 0; [-kaT/Ax](t.L) = h(T(t,L)- T,)

e Letusdefine 6=T-T,

2
=18 98 x<Lio<t
o ot ox
[06/6x](t,0) = 0; -k[60/6x](t,L) =hO(t,L);

0(0.x) = 6,

1-D Transient in a Plate-1I

¢ The solution for 0(t,x) is assumed of the form:
0(t,x) = X(x)T(t)

* Substituting this in the governing equation, we get

2 2

1ATO g X0 jlldl:i‘”z‘

o dt dx? oaTdt X dx

* Since LHS is only a function of t and RHS is only
a function of x and yet they be equal, would

require that both sides be equal to a constant

= X(x)

11dT 1d*X , d%x dT
>———=———=-\ 224X =0, ——aX’T=
aT dt X dx2 :dﬁ *AX=0 dt orT=0

1-D Transient in a Plate-1I
¢ The solution for X and T are; .
X =C, cos(Ax)+C,sinAx)  T=Cse ™"
= 0=XT =(C, cos(Ax) +C, sin(xx))(qe““z‘)

=(C, cos(Ax)+C, sin(kX))(e’w“z‘) Caseltzmites

in C, and C,
¢ The BC at x = 0; 08/ 0x = 0, requires a symmetric
solution and hence C, =0

5 a0 . a2
=0=(C, cos(kx))(e’“?“ )3 P €M sm(?»x))(e ot

BCatx=L = (- kCT(-L) sin(hLM: h(QT cos(hL)M

= (Asin(AL))= E(eos(u)) = cot(AL) = k% = %

1-D Transient in a Plate-I11

* The solution for the eigen values can be
graphically interpreted as shown

¢ Thus we will have infinite
values of eigen values, but
these have to be numerically
determined. Your book
summarizes the first four
values as a function of Bi in
Appendix B3

¢ Thus the solution for 6 can be written as

=0= icne""}‘"zt cos(A,x) Still C,, needs to
n=l be determined

1-D Transient in a Plate-1V

* The constants have to be determined from
initial condition

* This will be again done by orthogonal functions

e It turns out that

L
j'cos(lnx)cos(lmx)dx =0 for n#m Messy to prove
0

Will be given as home work

L .
J.COSZ(X"x)dx _ A,L+sin(A,L)cos(A,L)
0 2,

L .

J‘COS(XHX)dX = %XHL)

0 n




1-D Transient in a Plate-V

* The initial condition is 0(0,x) = 6,
=0, = iCn cos(A,x)
n=l

L Lo
|84 cos(h,x)dx = [ 3 C,, cos(h,,x) cos(h, x)dx
0

on=l

* Note that in the RHS, only term n=m will survive

L L
|8 cos(A,x)dx =C, j‘cos2 (A, x)dx
0 0

sin(A,L) A L +sin(A,L)cos(A,L)
8 z =C, 0
(; 2sin(A, L)

n = 90 .
A,L+sin(A,L)cos(A,L)

1-D Transient in a Plate-VI

¢ Thus the solution for 0 can be written as

=2 sy ‘sm(X"L) et cos(A, x)
6,  aoA,L+sin(A,L)cos(A,L)
= 9 o5 ‘Sm(x“L) et cos(h, L)
0, aoiA,L+sin(A L) cos(A,L) L

* But, A L is determined by Bi

A f[Bi,it,i] — [ Bi,Fo, =
6, >’ L L

Heisler Charts-1

¢ The solution for 6 was shown to be

= L 23 Asm(k“L) et cos(A, x)
6,  aiA,L+sin(A,L)cos(A,L)

¢ In functional form

o f[Bi,it,ij - f[Bi,Fo,fj
8 >’ L L

* Heisler showed that when Fo > 0.2, just one term is
adequate to describe the solution

0 —a? i
=~ =Cie™ ™ "cos(h,X) Where C, =2 sin(, L)

0, AL +sin(A,L)cos(A,L)

Heisler Charts-11

* The coordinate of the mid-plane is x =0
= 79(;0) =Ce ™t = e MR — £(Fo, A, L) = £ (Fo, Bi)
o
* Thus, the spatial profile at any time can be written as

= % =cos(Ax) =f(AL,x/L)=f(Bi,x/L)

 Heisler presented these results in the form of two
graphs, called Heisler Charts

 For Cartesian system, it is shown in the next slide.
Similar curves for the cylindrical and spherical one
dimensional cases are given in Appendix D of your
book

Heisler Charts-I11 e
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Criterion for Lumped Analysis

 If the variation of temperature within the slab is less
than 5%, we can call it lumped

O(x=L) _ cos(4,L)=0.95 = A,L=0318 radian
8(0)
= }\'IL =
cot\L)

e Thus, Bi should be < 0.1 for lumped analysis to be
valid. This can also be viewed in the chart




0= GOCIC_OO“2t cos(A;x)

Energy Storage-I

* As energy storage is one of the main application of
transient, it is useful to get a method to gstimate the
total energy stored

¢ From thermodynamics

AE = 2_[pAc(T Tp)dx = 2pAcLL j( —0,)dx
0
=2pAcL, — j(cle*‘“' cos(A,x) —1)dx
Lo L
AE 1 { C et sin(A,x) _X]
0

2pAcLO, L )
AE —lce _Mlzt sin(A,L) _1 0(0)SnML) sin(A,L) -1
AE AL AL

0 1 1

Energy Storage-II

AE [(0)sm(k L
) AL

]: f (AL, Fo) = f (Bi, Fo)

1

1-D Transient in a Semi-Infinite Plate-I

¢ Another case of interest in transient heat transfer is
what is called heat transfer in a Semi-infinite plate

« It is has many useful applications. In fact, all
transient problems start as semi-infinite wall
* The governing equation

19T _ 9T

<x<w 0<
oo ax 0<x<w;0<t

¢ Boundary conditions

T(0,x)=T,; T(t,0) =T, ; T(tx—w) =T,

1-D Transient in a Semi-Infinite Plate-I11

¢ In this course we shall give you the form of the
variable. Note that it will be a combination of X and t

X
n=—x om_ 1 om__x =05
(40“)0.5 jiax (401)0'5 > o (40()0'5 t1.5
» Using chain rule

OT _dTom_dT 1

x dnox dn (4at)*d

T _9(aT\_o(dT 1 | _d’Toq 1 T 1
ox ) x| dn (dan)®

x2 ox T dn? ax (4ot dn? (4ot

JdT dT 811 dT x 05 dT —x

d dn ot dn @™ O dn 2t@don®

1-D Transient in a Semi-Infinite Plate-I1

* Mathematically, problems that have boundary at
infinity are often solved by a method called similarity
solution

¢ In this method, a new variable, called similarity
variable is introduced

* This variable is chosen such that T becomes a
function of only this variable

¢ Thus the governing equation will be transformed into
an ODE from PDE
* There are systematic ways by which this can be

derived, but often involves some qualitative
arguments

1-D Transient in a Semi-Infinite Plate-IV

 Substituting for the partial derivatives in the heat
equation, we get

14T -x da’T 1

a dn 20400 dn? (dan)

d’T 14T —x(4at) dT
o s =
dn o dn 2t(4on)" dn

2
* Thus we getan ODEinn — =-2n—
d

¢ The boundary conditions
Tt0)=T,= Tn=0) =T,

T0,x) =T;; T(tx—o) =T; = Tn=0)=T,




1-D Transient in a Semi-Infinite Plate-V

2
* The governing equation is aT_ ) dT

n—
dn? dn
* To get the solution, we make the transformation

2 +

LI

dn dn® dn

* The equation in the new variables can be written as

+

+ dT
dT =-oT* = o =-2ndn

dn

« Integration gives In(T*)=-n?+C =T = Cle"12

dT 2 1 2 n 2 uisa
= =Ce™ =T=CJeMdn+C, =C,[e™ du+C, dummy
d’ﬂ 0 0 variable

Integration

Consider 1= DJ? Te'("2+y2)dxdy 2_[ j.ef“z)rdrde
0

—00 —o0 0

=T
0

1= _[e’xzdx J'e’yzdy =412, where I, = _[e’xzdx
e 0

o 2T
Putr2=t 21:1 Ie-‘ﬁdezzn[_e-l
00 2 2

From above 4-112 =mor I =g

Error function can be computed by using the fact that
4 6 8
—x2 X" X0 X
e =l-x2+ -2y 4
20 314

Error Function
o,
 Theintegral [e™ du occurs very frequently in physics

0
¢ Though not integrable in explicit form, it has been
integrated with series expansion and tables have been
constructed under what is called Error Function
X 2
=3 [e™ du erf(x) is tabulated in
\/E 0 Appendix B of your

Jn book

2 x=3 is as good as

Erf(3) = 0.99998

erf(x) =

« It turns out that Te-"zdu =
0
¢ Hence erf(«0)=1, erf(0) =0

* A complimentary error function
is also defined as

erfc(x) = 1 — erf(x)

1-D Transient in a Semi-Infinite Plate-VI
* The solution T = ClTe’“zdu +C, =C @erf(n)+cz
e The Boundary condiotion, T(m=0) = T, implies
Ts=c1gen°(0)+c2 =G, =T,
* The Boundary condition, T(n=00) = T; implies

N 2

Jn

1-D Transient in a Semi-Infinite Plate-VII

¢ Forn = 1.82, 6=0.99; This implies that n = 1.82
is for all practical purposes is c©

n=182=>— =18 = x=3.64at)”’

(40t)"3

* The above numbers can be interpreted in the
following manner

e x> 3.64 (at)? can be considered as infinitely thick
* Similarly for t < x*/(13.25 ), the plate can be
considered infinite

¢ Now we will turn our attention to heat transferred

T =(T, =T, )erf ) +T, 1 099
T-T, 0
= *-=erf(n)=6
m-r) " 0
n 1.82
0T _dT 1
x  dn (4an)®’

1-D Transient in a Semi-Infinite Plate-VIII

x=0 dn n=0 (4(“)0'5

« We had shown that 9T - Cle"12 L dar
dn dn

n=0

o mem) 2 eT)

(4a0)* ﬁ (ra)*’

» Solutions are available for other boundary conditions and
are summarized in your book




Application-I
* Semi-infinite wall finds lots of applications, such as
bubble growth, vapor explosion etc.
¢ In vapor explosion, analysis liquid metal drops falling
in relatively cold water is required

* This can be idealized by two semi-infinite slabs
brought into intimate contact

* We shall see the gist by trying to calculate what is
known as the contact temperature

T,

~qy=-k (

Application-IT

At the instant they come in contact, thermal
equilibrium would dictate that the contact temperature
T, would lie in between T, and T,

If the contact temperature remains same, thermal
equilibrium demands that the heat flux from one face
should be equal to the heat flux from the other face.

The solution on the two slabs can now be worked
similar to what we have obtained with T, and T,
similar to T;
T, - T, » T, -T.
5 015) and g3 =-ky 7( : 55)
(mo; t) (Tau,t)

Application-IIT

* Since heat flux coming out from 1 will be getting into
the other,

gl ey o LT (T -Th)

1 =Kz
(mo,)”® 7 (o, 0)*°

(T,-T,) _ky o (kypey)™

=
(T,-T,) Kk 0‘20'5 (klplcl)o's

* Rearranging, we get

T, (k,p,c, )’ +T2(k2p202)0'5

Ty =
(kypyey)* +(kypye, )™

Finite Difference Method - 1

We found that analytical methods are complex

These methods are restrictive and are applicable for
simple boundary conditions

Numerical methods are easy to implement and we can
obtain results quickly

We will see the gist of the method

Finite Difference Method - 11

. . 2
Governing Equation: B_T - a o°T
ot ox°’
Physical Domain:

1 i-1 i i+1 N

Computational

Domain: T ) n+l

T" /

1

Finite Difference Method - 111

One of the FDM approximation is

ai At x> . Ax?
This leads to the nodal equation

n n aAt n n n
T =T+ (T 2T + T2

This method is called explicit method, as the
values at T,"™*! are readily obtained explicitly, once
the initial and boundary conditions are known




Finite Difference Method - IV

This method suffers from a disadvantage that the
time step At < 0.50At/Ax?

* This is called stability limit. This occurs due to
explosion of errors above the limit

¢ If we need more accurate results, we need more
nodes, and this implies small Ax. This will limt At
to be small and takes more computational time

* This can be overcome by choosing a different
method called implicit method

Finite Difference Method - V
Implicit Method

dT

T n _ Tin+l _Tin azT
ot

At ox>

n
n+l n+l n+l
_ T —2T +T5
Ax?

i i

* This leads to the nodal equation

i+l

At Ax?

e [— —O‘Azt ) L [1 + ZO‘A; ) 4o [— LA; ] e
AX AX Ax

Tin+l _ Tin Tn+1 _ 2Tin+1 + Tirl-;-l
=

Finite Difference Method - VI

 For the simple case of boundary temperature

known e ® ® e e n+l
° ® ® &) on
1 2 3 4 5
1 0
_ OAt 20At  aAt T, T,
Ax? Ax? Ax? T, "
QAL 20At At ntl N
T2 i T2 T T,
Ax? Ax? Ax? el n
_@At . 2aAt oAt T, T,
Ax? Ax? Ax? Tsn+1 Tsml
0 1

¢ The matrix can be inverted in Matlab or any other software




