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Introduction to Convection-I

• We had defined the term heat transfer coefficient as

• We had introduced the concept of convection 

through the empirical law called the Newton’s law 

of cooling

( )∞−=′′ TThq s

• Till now we have been specifying this parameter 

in problems. Now we shall look at ways and 

means of computing this parameter

• Prior to going into details, we shall have a cursory 

look of convection and shall try to unify the 

subject of heat transfer to mass transfer and 

momentum transfer (fluid mechanics)
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Introduction to Convection-II
• By mass transfer we imply the movement of one 

specie from one media into a mixture

• To give you a concrete example, we shall look at 

motion of water vapor from a pond into atmosphere 

of air and water vapor mixture

• Applications for these are in drying of substances, 

evaporative cooling, such as in cooling towers

• The unification is possible due to similar nature of 

governing equations and boundary conditions

• Prior to the derivation of governing equations, it will 

be useful to get the nomenclature sorted out in the 

study of mass transfer
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Introduction to Convection-III
• In convective heat transfer, we just introduced 

( )∞−=′′ TThq s

Mass Flux of 

Specie-A 

(kmol/m2-s)

Heat Transfer Coefficient (W/m2-K)

• Analogously, we shall introduce the empirical 

equation for mass transfer as

( )∞−=′′ AAsmA CChN

Heat Flux (W/m2)

Mass Transfer 

Coefficient 

(m/s)

Concentration 

(kmol/m3)
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Introduction to Convection-IV

Mass Flux of 

Specie-A   

(kg/m2-s)

• Often in mass transfer, the equations are expressed 

in mass basis

( )∞ρ−ρ=′′ AAsmA hn

Mass Transfer 

Coefficient 

(m/s)

Density    

(kg/m3)

• Note that the above equation is obtained from the 

molar basis equation by multiplying both sides of 

it by Molecular weight

MNn ′′=′′ CM=ρand
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Analogy between Mass, Momentum 

and Energy Transfer-I
• Consider wind blowing on a flat plate. Let us recall 

our concept of Boundary Layer

• In 1904 Prandtl introduced this concept and is 

considered a big milestone in Fluid mechanics

• The layer in which the velocity gradients are confined is 

called the boundary layer
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Analogy between Mass, Momentum 

and Energy Transfer-II

Some Definitions

• Boundary Layer Thickness

• Theoretically u=U only at y = ∞

• It is customary to define boundary layer thickness 
as the thickness when u = 0.99 U denoted by δ

Streamline if plate 

not present

• Displacement Thickness

Streamline if plate 

not present

Streamline with 

plate present

Boundary Layer

y

δ*
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Analogy between Mass, Momentum 

and Energy Transfer-III
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• We had defined Friction Coefficient Cf as

• From the definition of Newton’s law of Viscosity
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Analogy between Mass, Momentum 

and Energy Transfer-IV
• Analogously we can define the terms for cold air 

blowing on a hot plate
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Fourier’s law
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Analogy between Mass, Momentum 

and Energy Transfer-V
• Analogously we can define the terms for moist air 

blowing on a liquid surface
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Fick’s law
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Analogy between Mass, Momentum 

and Energy Transfer-VI
• Usually, it is assumed that on the plate, saturation 

conditions exist
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• The free stream concentration or density can be 

calculated from relative humidity
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Analogy between Mass, Momentum 

and Energy Transfer-VIII
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• Nu is called Nusselt Number. Note that this different 

from Biot number

• We can define non-dimensional parameters as
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Analogy between Mass, Momentum 

and Energy Transfer-VII
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• Sh is called Sherwood Number. 

• Analogously, we can define non-dimensional 

parameters for the case of mass transfer as
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• As stated earlier, Heat equation is the first law of 

thermodynamics with only conduction

Recap of Differential Analysis - I

• We had derived the conservation of mass and 

momentum in ME 203

• These were the celebrated Navier-Stokes Equations

• Now we shall extend the concept and derive the 

Energy Equation

• This is perhaps the most difficult equation in terms of 

the number of terms
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Recap of Differential Analysis - II

• Conservation of mass in Cartesian coordinates was 

derived earlier as
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• In vector form, we could write this as
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• The state of the stress of a 

fluid element could be 

represented as shown in the 

figure

15

• The momentum balance equation is a vector 

equation and it was derived as 
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• This equation has density, 3 velocities and 9 stresses.

• To close the system, Generalized Newtonian Stress-

Strain relations were introduced without proof 

Recap of Differential Analysis - III
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We have all stresses in terms 

of pressure and velocities

Recap of Differential Analysis - IV
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• The only assumption is the equation for stresses, 

which is the generalized law for Newtonian Fluids

Recap of Differential Analysis - V
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• Previously we derived the energy equation (First 

law of Thermodynamics) with only conduction

• Now we will modify it with Convection or Fluid 

Motion

• Conceptually stated for a control volume, 

Rate of 

increase of 

energy in the 

control volume

=

Net Rate of energy 

flowing into the control 

volume by conduction 

and convection

+

Rate of energy 

generated 

within the 

control volume 

gennetCV EEE &&& +=

Conservation of Energy-I
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To keep the 

derivation simple, 

the energy transfer 

due to shear stresses 

are neglected. This 

is valid for low

speed flows

zyxq δδδ′′′
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• Looking at the net rate of energy convecting and diffusing in, 

we can write

outinnet EEE &&& −=

yx)weq(zx)veq(zy)ueq(E ''
z

''
y

''
xin δδρ++δδρ++δδρ+=&

yxz
z

)weq(
)weq(

zxy
y

)veq(
)veq(

zyx
x

)ueq(
)ueq(E

''
w''

z

''
y''

y

''
x''

xout

δδ













δ

∂

ρ+∂
+ρ+

+δδ













δ

∂

ρ+∂
+ρ+

+δδ













δ

∂

ρ+∂
+ρ+=&

Conservation of Energy-III

gH
2

wvu
Tce

222

v +
++

+=In our derivation for gases

21

zyx
z

)weq(

y

)veq(

x

)ueq(
E

''
w

''
y

''
x

net δδδ














∂

ρ+∂
+

∂

ρ+∂
+

∂

ρ+∂
−=&

• Looking at the net rate of energy convecting and 

diffusing in, we can write

• The change of energy in the control volume can be 

expressed as

Conservation of Energy-IV
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gennetCV EEE &&& +=

Conservation of Energy-V
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Conservation of Energy-VI
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• Thus, the energy equation can be written as

• This is the conservative form of energy equation for low speed 

flows

• The left hand side can be simplified as
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Conservation of Energy-VII

• If property cv can be treated as constant, we can write
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• The more accurate form of the equation by taking pressure work 

into account can be written as
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Conservation of Species-I
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Conservation of Species-II
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Conservation of Species-III
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• Thus, the species conservation equation can be written as

• This is the conservative form of species conservation equation 

• The left hand side can be simplified as
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• The simplified momentum, energy and species conservation 

equations for incompressible flow with no body force can be 

summarized as
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• In case of two-dimensional boundary layer flows over a flat 

plate with no source terms, we can simplify the equations as

• Introducing
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Analogy - III
• The non-dimensional equations can be written as
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• The Parameters on right are defined as follows
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Analogy - IV
• The final form of non-dimensional equations can be written as
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• Most gases have Pr and Sc approximately 1

• Hence the non-dimensional equations are identical

• The way we have defined the non-dimensional variables, the 

boundary conditions are also identical
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Analogy - V

• Hence the solutions for the non-dimensional variables shall also 

be identical

• Therefore, the slopes at the wall shall also be identical
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Analogy - VI
• From the non-dimensional equations, we can also deduce the 

following functional form

)(RefC Lf = Pr),(RefNu L= )Sc,(RefSh L=

• For Pr = 1

mT δ=δ=δ

• Since Pr = ν/α, it represents the ratio of momentum diffusivity 

to thermal diffusivity. Hence,

T;1PrFor δ>δ>

• Similarly, Sc = ν/DAB, it represents the ratio of momentum 

diffusivity to mass diffusivity. Hence,

m;1ScFor δ>δ>
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Analogy - VII
• We also make the following observation from intuition, which 

will be proved later

• For Pr not equal to 1

n
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• For Sc not equal to 1
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Lewis NumberFor laminar flows, n = 1/3
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Analogy - VII

• We can write the relationship as a power law

• This implies that
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Remember that the density and specific heat is that of mixture
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• The most common application of this analogy is the evaporative 

cooling

Application of Heat and Mass 

Transfer Analogy - I

• It is commonly adopted in cooling towers where hot water is 

allowed to fall in the form of a sprays from top and relatively 

dry air is blown from below to create evaporation and thereby 

extract the latent heat from the spray and cool.

• In case of steady evaporative cooling, the heat convected from 

air into the cooled liquid is equal to the heat required to 

evaporate the necessary amount of moisture for mass transfer

( ) fg,Assat,Amfgevapevap h)T(hhnq ∞ρ−ρ=′′=′′

( )sconv TThq −=′′ ∞ Ts, ρA,sat(Ts)

T∞, ρA∞
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Transfer Analogy - II
( ) ( ) fg,Assat,Ams h)T(hTTh ∞∞ ρ−ρ=−⇒

( ) ( ) fg,Assat,A
m

s h)T(
h

h
TT ∞∞ ρ−ρ=−⇒

( ) fg
Au

,A

s

ssat,A

n1
p

s h
M/R

T

p

T

)T(p

Lec

1
TT









−

ρ
=−⇒

∞

∞

−∞

• We use the relation of  h/hm derived earlier and the equation of 

state to give
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• The mean temperature is then eliminated as follows

Application of Heat and Mass 

Transfer Analogy - III
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• In most practical cooling problem, the mass fraction of vapor is

very small and hence density of mixture is approximately equal 

to density of component B

Bu M/R

p
T =ρHence


