Introduction to Convection-I

* We had introduced the concept of convection
through the empirical law called the Newton’s law
of cooling

* We had defined the term heat transfer coefficient as
q"=h(T,-T..)

» Till now we have been specifying this parameter
in problems. Now we shall look at ways and
means of computing this parameter

* Prior to going into details, we shall have a cursory
look of convection and shall try to unify the
subject of heat transfer to mass transfer and
momentum transfer (fluid mechanics)

Introduction to Convection-II

* By mass transfer we imply the movement of one
specie from one media into a mixture

* To give you a concrete example, we shall look at
motion of water vapor from a pond into atmosphere
of air and water vapor mixture

* Applications for these are in drying of substances,
evaporative cooling, such as in cooling towers

* The unification is possible due to similar nature of
governing equations and boundary conditions

Prior to the derivation of governing equations, it will
be useful to get the nomenclature sorted out in the
study of mass transfer

Introduction to Convection-III

* In convective heat transfer, we just introduced
q"=h(T,-T.)

. %

Heat Flux (W/m?2) Heat Transfer Coefficient (W/m?-K)

* Analogously, we shall introduce the empirical
equation for mass transfer as

,1’\ = hm(CAs _CAM)

MaS§ Flux of Mass Transfer o ——
Specie-A Coefficient (kmol/m?)
(kmol/m?-s) (m/s)

Introduction to Convection-1V

* Often in mass transfer, the equations are expressed
in mass basis

’;\ = hm(pAs _pAw)
Mass Flux of Mass Transfer

Specie-A Coefficient
(kg/m?-s) (m/s)

Density
(kg/m?)

* Note that the above equation is obtained from the
molar basis equation by multiplying both sides of
it by Molecular weight

n"=N'M and p=CM

Analogy between Mass, Momentum
and Energy Transfer-1

* Consider wind blowing on a flat plate. Let us recall
our concept of Boundary Layer

{J _,.'-*'""- :'?.

e In 1904 Prandtl introduced this concept and is
considered a big milestone in Fluid mechanics

* The layer in which the velocity gradients are confined is
called the boundary layer

Analogy between Mass, Momentum
and Energy Transfer-1I
Some Definitions

» Boundary Layer Thickness
+ Theoretically u=U only aty = «

« ltis customary to define boundary layer thickness
as the thickness when u = 0.99 U denoted by &

» Displacement Thickness

"
8 «— Streamline if plate
not present




Analogy between Mass, Momentum 7

and Energy Transfer-1II

* We had defined Friction Coefficient C; as

T T

W w

Cf:
I 2 1 2
—pU —pu
2P zpw

* From the definition of Newton’s law of Viscosity

T —ua—u
dy 4<0
o " u,
ui b .
- g 2
* Therefore C;=— =0 : y=0 A -
Epuwz EPUWZ dy s REL

Analogy between Mass, Momentum 8
and Energy Transfer-1V

* Analogously we can define the terms for cold air
blowing on a hot plate

N T Free stream 8,x)

T, —>
Thermal
¥y I T», boundary
4 6 layer
L —

-x R
aT
” JT k=
a'=-k=r  =h(T,-T.) R
Yly=0 =hs= T -T.)
Fourier’s law (T -T.

Analogy between Mass, Momentum 9

and Energy Transfer-V

* Analogously we can define the terms for moist air
blowing on a liquid surface

U,

Mixture >
of A+B [ Free stream
— A= 8. (x)
Ch o >
> Concentration
‘ >
)‘ > L5 boundary
8. FCy>
> ) A layer
A
- Gy
, oC, AB a;: ;
Ny =-Dyp =hy,(Ca=Cal) Y ly=0
% |y = e = )
Fick’s law b

0

Analogy between Mass, Momentum l
and Energy Transfer-VI

* Usually, it is assumed that on the plate, saturation
conditions exist

@) g Pa@)

=C,. =
As R,T, RT,

» The free stream concentration or density can be
calculated from relative humidity

Pae,  _ Pa=RT. _ Paw __ Ca

Pasa(Te)  PasuRTe  Pasu  Casu(Te)

= 0p0 ==

Analogy between Mass, Momentum l
and Energy Transfer-VIII

* We can define non-dimensional parameters as

kaT* (T, -T,)
dy y'=0 L :gzaT

(T,-T.) koay'|

=h=- =Nu

¢ Nu is called Nusselt Number. Note that this different
from Biot number
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Analogy between Mass, Momentum l
and Energy Transfer-VII

* Analogously, we can define non-dimensional
parameters for the case of mass transfer as

ct= Cp—Cpy . £_y
A= ; =
Caw =Cay L
D BCA* (CAsm _CAS)
AB * .
N O v LI EISTN Y
" (CAS _CASW) k ay* y'=0

¢ Shis called Sherwood Number.




Recap of Differential Analysis - 1
* As stated earlier, Heat equation is the first law of
thermodynamics with only conduction

¢ We had derived the conservation of mass and
momentum in ME 203

* These were the celebrated Navier-Stokes Equations

* Now we shall extend the concept and derive the
Energy Equation

» This is perhaps the most difficult equation in terms of
the number of terms

Recap of Differential Analysis - 11
¢ Conservation of mass in Cartesian coordinates was
derived earlier as

op_ dlpu) , Ipv), alpw) _
Jt  dx dy dz

* In vector form, we could write this as g,

d . . o

P ivipv)=0 ]

ot » o

P o'u yz
Y Oy
* The state of the stress of a 10z

fluid element could be ) i -
represented as shown in the 5x )
figure 4

Recap of Differential Analysis - II1 |

* The momentum balance equation is a vector
equation and it was derived as

F{%A\‘/.V) (u)] _ (pgﬁa(ac;)* a(ac;x)ar %}

p(w+(f/.v) (v)) - [ng +a("xy)+ a("yy)+ a(%)]

ot Jx dy oz
P(¥+(\7.V) (W)] = [pgl+a(°“)+ a(Gy‘)+ a(cu))

Jx dy 0z
» This equation has density, 3 velocities and 9 stresses.

* To close the system, Generalized Newtonian Stress-
Strain relations were introduced without proof
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Recap of Differential Analysis - IV

on 2 i
o = nidll-o . SV Y
e _2ye)
dv 2 o Normal stresses
0 = pd ol UV
W P Hay 311(
g, :—p+2ua—w = EM(V.V)
gz, 3
e
e dy ox
3 0 Shear stresses
e e
5,0, =4 22
o o u(aﬂ+alj ‘We have all stresses in terms
ox 0z of pressure and velocities

Recap of Differential Analysis - V

Du ap (9% 0% 3% Jd | u
7__7_'_”_7 - — |+ —] =
Dt 9x |ax* dy® 3*| 9x|3
Dv_ o [V 3% 82v} d [u

(V-V)}+ pe,

= oo oy g(v-v)}Jrng

Dt dy | ox* 9y’ " oz’

Dw 9 [w 2w *w]| [ p -
— =AU —+—+— |+ =—| =(V.V]|+
P Dt 0z u_ ox? oy’ 8z2} 8z|: 3( ):| Pe.

pll))—V:—VP+uV2\7+%V(V.\7)+ pg
t

'+ The only assumption is the equation for stresses,
which is the generalized law for Newtonian Fluids

Conservation of Energy-I

* Previously we derived the energy equation (First
law of Thermodynamics) with only conduction

* Now we will modify it with Convection or Fluid
Motion

» Conceptually stated for a control volume,

Rate of Net Rate of energy Rate of energy
increase of _ | flowing into the control generated
energy in the "~ | volume by conduction within the
control volume and convection control volume

ECV :Ene: + Egen




Conservation of Energy-II

o A(q,
[(qy +pve)+%8y 5x8z

q75,8.8 |

xVyvz

/| To keep the
derivation simple,
4 | :> the energy transfer
due to shear stresses
Y are neglected. This
L 4 ¥ is valid for low
A speed flows

=> iz

(g, +pve)s, s,

O e o

Conservation of Energy-IV

» Looking at the net rate of energy convecting and
diffusing in, we can write

5 _ [ rpue) 9(a, +pve) d(ay +pwe)
net ox dy 9z

dxdy dz

* The change of energy in the control volume can be
expressed as

3(8,8,8,pc,T)

» Rate of heat generated in control volume is equal to

E e, =q75x3y82

Conservation of Energy-VI

* Thus, the energy equation can be written as

d(puc ,T) d(pve,T) d(pwec,T) 92T 02T  3°T ”
=k -
X * dy - 0z 8x2+8y2+322 T
 This is the conservative form of energy equation for low speed
flows
¢ The left hand side can be simplified as

pu a(c"T)+c‘,T a(pu)+pva(C‘T)+c‘,T a(pv) tow 9(c,T) te T 9(pw)
ax ax dy dy dz dz

—e,T 9(pu) N AUPV) N I(pw) +pu d(c,T) +ov 9(c,T) +pw 9(c,T)
X dy dz ax dy dz

(e, T) d(c,T) d(c,T)
=pu o +pv 3y +pw >
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Conservation of Energy-III
In our derivation for gases e = c, T+ L-"V/;,ﬁ/ ;gH’

* Looking at the net rate of energy convecting and diffusing in,
we can write

Enet = Ein _Eou:

Em = (q; +pue)5y8z+(q;, + pve)dx 82+(q; + pwe ) dx dy
E o =[(q; +pue)+w6xjéyéz+
X

. (q, +
[(qy + pve)+M8yJ8x 8z +
dy

((q; +pwe)+ MSZJSX dy
z

2
Conservation of Energy-V
ECV =Enet + Egen
d(pe,T) _ .
e Bxdybe = 4 xbyb
B 9(q, +pue) a(q;ﬂ)ve) 9(q,, +pwe)
[ I + 3 + 5 5}8{52
* In steady state
. Py .
_[a(qx+pue)+ (qy+PVe)+9(qW+pwe)}+q,,,=0
ox dy Jz
” oT ” JT ” JT
k2. - k2. - k2. e=c.T
dx ox dy dy E oz’ e=5y
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Conservation of Energy-VII

« If property c, can be treated as constant, we can write

(T) 9(T) 9(T) 92T 92T d°T

RASRA jEasea =k

ax L PYe dy v, ax2+ay2+az2 d
2 2 2

L) ) AT) k [a T 92T @ TJ e

9x dy v dz :pcv aX2+ay2+aZZ

puc,

¢ If the fluid is incompressible, ¢,= ¢,= ¢

. uB(T)+vB(T)+W 9(T) “x 92T . 92T . 92T ta”

P X 3y 0z ) \ax? Tay? a2 )7

* The more accurate form of the equation by taking pressure work
into account can be written as

(T)  a(T) (T) 92T 9°T 3°T ”
pCp[UTﬁ—VT-ﬁW 5 j:k[axz +ayz +a > |t4
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Conservation of Species-I
(i +pawBy3

[(nky +pAV)+

78([1:“ *Pav) 8y [8x 87

A
/

n%8,8,5,

=> iz =
(n:Xy + pAV)axsz [ 5}’
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Conservation of Species-II1
* Thus, the species conservation equation can be written as
I(pa) , A(PAY) , A(PAW) %pn  0%Pa , %Pa |, m
=D
x oy a2 BTk ey ¢ agr )T
« This is the conservative form of species conservation equation
 The left hand side can be simplified as

W2BA) o B L 3 3 A W)

v—AZ ZFAZ

Ix A ox Jdy A Jdy v dz Pa Jdz

_ d(u) Iy I(w) 9(pa) I(pa) 9(p o)
7PA[ Bx%az J+u ax Y dy P dz

For incompressible _y20a), 9(Pa) 9P A)
flows ox dy 0z
2 2 2
‘,‘ue(PA)JrVa(PA)JrWa(PA)=DAB 9 PAJra PAJra Pa +n7]
Ix dy dz ox? dy? 9z

Momentum, Heat and Mass Transfer ~
Analogy - II

¢ In case of two-dimensional boundary layer flows over a flat
plate with no source terms, we can simplify the equations as

2 2
QO o) pfod 97w ) 9
9x dy plax? oay? X
BECICONRNE TCOR I 92 +BZT A
9x dy pe, (9x?  ay?

9(Pa) 9(pA) 2’ 2’ 1
u E;)XA +v gyA :DAB[ B)?ZA + a;zA +//A

 Introducing

* B «  T-T « - « «
u=u;v=LT= s;pA=PPAs;X=§;y=X
u,, u,, T. - T, Paw—Pas L L
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Conservation of Species-11

OM,_cy)
IP,) e
e sgys’z_n sgy&'

[ +pau) A +PAV) dnhy +paW) Bxo5 5
ox dy 0z

* In steady state

= MA—net + Mgen

_[aa +paw) A +PAV) Dy +paw) |, 1w
dax dy 9z A

Py
ox

Py
dy

Py
dz

»
N =—Dyg

» »
ny =-D,p n, =—Dyg

Momentum, Heat and Mass Transfer >
Analogy - 1

¢ The simplified momentum, energy and species conservation
equations for incompressible flow with no body force can be
summarized as
2 2 2
ua(u)+v9(u)+w d(u) 7u[9 u+9 u+9 uj_pr

9x oy 3z plox® ay? 9z%) ox

2 2 2
ua(v)+va(v)+wa(v)zgav+9 v+3v _9dp
ox dy 9z plox? ay? 9z?) ay

2 2 2
uB(w)+Va(w)+Wa(w):£Bw+aw+8w _dp
9x dy dz plox? ay? 977 Jz

9(T) 9(T) 9(T) k (92T 9°T  9°T
u +V——+w = + + +
9x dy dz pe, (9x?  dy? 922

+ N,

9(pa) 9(Pa) 9(pa) 90°pa 0P A 0P A
u +Vv +w =D — A 4 + A
ox ay 0z dax dy 9z2°

Momentum, Heat and Mass Transfer *
Analogy - III

* The non-dimensional equations can be written as

« . 2 %
u*a(u*)+va(u*)= 0 d°u
X dy pu,L ay*z

- 16 A T T4 ) k 21"
u —+V —|=
ox Jdy pcyu,L ay,,z

. a(PA*)_‘_V* CICIND) _Dus [BZPA* n BZPAAJ

ax ay* u_ L ax«l ay«z
¢ The Parameters on right are defined as follows
Lo__w 1 k. o D
Re | pu_L’ Re | Pr pcpuNL’ Re; Sc  u,L’

where, Pr =—; Sc =

v
ﬁ Prandtl Number, Schmidt Number

Q<




Momentum, Heat and Mass Transfer '

Analogy - IV

 The final form of non-dimensional equations can be written as

. . 2 %
u*a(u )+Va(u ): 1 [B u ]

ox” ay” Re | ay*z

«O(T™) (T 1 9°T"
u —+ Vv — = _
ox dy Re | Pr Byvz

20D 30D L [3%
X dy Re | Sc ay*‘-

* Most gases have Pr and Sc approximately 1
¢ Hence the non-dimensional equations are identical

¢ The way we have defined the non-dimensional variables, the
boundary conditions are also identical
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Momentum, Heat and Mass Transfer
Analogy - VI

From the non-dimensional equations, we can also deduce the
following functional form

C; =f(Rey) Nu =f(Re,Pr) Sh =f(Re ,Sc)
ForPr=1
8=08;=9,

Since Pr = v/a, it represents the ratio of momentum diffusivity
to thermal diffusivity. Hence,

For Pr>1; 8>3,

Similarly, Sc = v/D,,y, it represents the ratio of momentum
diffusivity to mass diffusivity. Hence,

For Sc>1; 8>9,,

Momentum, Heat and Mass Transfer

Analogy - VII
e Since Nu=f(Re ,Pr) Sh =f(Re; ,Sc)

* We can write the relationship as a power law

_hL _h,L

Nu=—=C Re,"Pr" Sh =C Re; " Sc"
k D,g
¢ This implies that
h  k Pr" opc, pr" Le

= — = =pc, ——=pc, (Le)'™
hy, Dug Sc" Dyg Sc” Pe (Le)" Pe

h 1-n
= —=pc,(Le

h, pc, (Le)

Remember that the density and specific heat is that of mixture
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Momentum, Heat and Mass Transfer
Analogy - V
¢ Hence the solutions for the non-dimensional variables shall also
be identical
¢ Therefore, the slopes at the wall shall also be identical
Bu* :ReL% :i =Nu = apé =Sh
3y |2 9y [y, dy =
= Rey, C—' =Nu=Sh
2
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Momentum, Heat and Mass Transfer
Analogy - VII
¢ We also make the following observation from intuition, which
will be proved later
* For Prnot equal to 1
3 =pPr"
oy
¢ For Sc not equal to 1
—=Sc"
8l"l'l
¢ From the above
Biz Se =Le" where LC=&=L
3, \Pr Pr Dy
For laminar flows, n = 1/3 Lewis Number
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Application of Heat and Mass
Transfer Analogy - I

* The most common application of this analogy is the evaporative
cooling

 Itis commonly adopted in cooling towers where hot water is
allowed to fall in the form of a sprays from top and relatively
dry air is blown from below to create evaporation and thereby
extract the latent heat from the spray and cool.

* In case of steady evaporative cooling, the heat convected from
air into the cooled liquid is equal to the heat required to
evaporate the necessary amount of moisture for mass transfer

Qovap = Nwap Ny = h (PA,x.n (Ty) - PA,w) by, T, Pas
-

- = h(T, - T,
9 conv ( 2 Ty pasalTY




Application of Heat and Mass
Transfer Analogy - II

= h(Tm _Ts): hm(pA,sal (Ts)_pA,w) hyg

h
= (1., _Ts):Tm(pA.sal (Ts)_pA,w) hy

Iz pe, e

h,
* We use the relation of h/h,, derived earlier and the equation of
state to give
g [pA.sul(Tg)_pA,w]
1 T Te
s h «

pche]"‘ R, /M,

= (T, -T,)=

1 (pA,aul (Ta)_pA,W)

= (T, -T;)= o
( ) pe, e’ TR, /M)

hg,
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Application of Heat and Mass
Transfer Analogy - II1

¢ The mean temperature is then eliminated as follows

* In most practical cooling problem, the mass fraction of vapor is
very small and hence density of mixture is approximately equal
to density of component B

p

Hence PT =————
R, /My

= (T, -T,)

~ M, hfg Pasa (Ts) = Paw
Mg pCpLel’" p
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