Heat, Mass and Momentum Transfer
Over A Flat Plate - |

¢ The final form Boundary layer equations Over a flat plate was
derived as
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¢ The exact solution can be obtained using similarity solution

Heat, Mass and Momentum Transfer
Over A Flat Plate - II

First we shall derive the governing equations for momentum
transfer
‘We had seen the concept of Stream Function in Fluid Mechanics

The definition of stream function is such that the velocity
components are obtained through partial derivatives as given by
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dy ox
The motivation for stating this way is that the stream function
would automatically satisfy the continuity equation
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* Now a similarity variable ) is defined as
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¢ The stream function is now assumed to be of the form
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¢ Now we try to transform the momentum equation as follows
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* Substituting these in the momentum equation, we get
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* The above equation was derived by Blasius and is called Blasius
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* The Boundary conditions /
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Solution of Blasius Equation-I

 Blasius equation given below does not have a closed form solution
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¢ It is easy to solve it numerically
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* As the equation is third order ODE, it is usually split into three
first order differential equation
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Solution of Blasius Equation-II

¢ There are many methods to solve. But we shall see the simplest
of all called Euler’s method

 This is not the most accurate method, but is easy to follow
¢ From Taylor series, we can write
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* Now if we apply it to a simple differential equation
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Solution of Blasius Equation-III

* Now if we apply it to the second equation
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* Now if we apply it to the third equation
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¢ From the boundary conditions y,(0), y,(0) are known, But y;(0)
is not known, but y,(c) is what is known

* The way to solve these is to assume y;(0), and proceed forward and
check whether y,(e0) = 1. If not take another guess and repeat

Solution of Blasius Equation-IV

* Discussion on the numerical solution
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Solution of Blasius Equation-V

¢ We had shown earlier that for Flat Plate, Pr = 1 and Sc = 1, the non
dimensional equations are similar

¢ Hence, applying analogy

Rc& =Nu=Sh
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* The dependence on Prandtl number is still not visible

* We shall show this by the integral method

Integral Method-1

* In Fluid Mechanics we had seen that the solution for C; could be
obtained approximately by integral method
¢ We shall proceed systematically to develop this for heat transfer

« Since energy equation cannot be solved until momentum equation is
solved, we have to handle both the equations

* In this treatment, we assume that §; <, or Pr> 1
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¢ Integrating Continuity Equation across Boundary layer
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Integral Method-II
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¢ The momentum equation is
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¢ Integrating Momentum Equation across Boundary layer
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Integral Method-III
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Integral Method-IV

* The energy equation is
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¢ Integrating Energy Equation across Boundary layer
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Integral Method-V
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Integral Method-VI

* We had just derived the integral momentum equation as
d®u (u T C Integral
— [— | —=11ad W _f
- dx;[u [uw ]y Tpul? 2 ® Momentum Eq
+ For Evaluation of wall shear stress and hence the

drag, we need to know the velocity profile

« Integral method assumes realistic profiles to get the
answer

» Assume a third order polynomial
u=a+by+cy’ +dy’

+ The constants are evaluated using boundary
conditions

Integral Method-VII
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* Further
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Integral Method-VIII

» To simplify the algebra let us define 1= % = ddn=dy
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Integral Method-IX
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Using the condition 8=0atx=0—C=0
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Integral Method-X
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The exact solution for this case is

exact solution is
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Integral Method-XII

The integral Energy equation was derived as
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« The procedure is similar

« Since thermal boundary layer is smaller than velocity
boundary layer, the velocity profile for this is same as
previously derived

« The temperature profile is assumed as
T= a+by+cy2 ery3

« The constants are evaluated using boundary
conditions

Integral Method-XIII
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Integral Method-XIV

+ To simplify the algebra let us define Ny = SL = 8pdny =dy
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Integral Method-XIV
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Integral Method-XVI
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Exact solution

Valid for 0.6 < Pr < 50 _

Turbulent Convection-1I

* Turbulence sets in at Re, = 5 x 10°

* The relations without proof are given as follows
C; (x) =0.0592Re, **

Nu, =0.0296Re,"* Pr'/3
* Note that Modified Reynolds analogy still holds

» The average values of friction coefficient and Nusselt
number can be obtained from
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Integral Method-XV
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Overview of Convection

* The study till now leads to the following summary
* C;is a function of Re
e Nu=f(Re,Pr) Nu=C Re™Pr"
e Sh=f(Re,Sc) Sh=C Re™Sc"
* Nu/Sh=Le™

* In the integral method, we had seen that

Cp = 0646 Nu, =0.3312/Re, Pr'?
Re,
C; __ 00646/yRe, C, Nu,  Modified
Nu,  03312JRe, P~ 2 Re py? Reynolds
. X Analogy

Turbulent Convection-I1

* Substituting the expressions we can obtain the average

values as
— 0074 1742
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Assumes Re, =5 x 10°

 If we assume that the fluid is turbulent right from the
beginning, it can be shown that
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Other Cases of Heat Mass and Momentum
Transfer

* We have seen the variation of C;, Nu, Sh for the case of
a flat plate

* These can be derived for cases such as over a cylinder,
sphere, over series of cylinders, over series of spheres,
etc.

* Relationships are similar, though it may be more
complex

* Once the relationships are known, applications are
straight forward

* Modified Reynolds analogy is invoked in many
applications routinely




