Heat Transfer in Circular ducts

* Flow inside passages is the most common application of
Fluid Mechanics and heat transfer

* Flow and heat transfer in between rod bundles are the
most common application in Nuclear Engineering

e When velocity increases beyond a critical value, several
whirls called vortices are formed

e This is called Turbulent Flow. In this case the velocity
and temperature continuously fluctuate with time

* The transition to turbulent is governed by the Reynolds
number

e Its value in circular ducts is typically 2300

Fully Developed Flow-1
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* It implies that the velocity profile does not change along
length

* The non-dimensional entrance length (L, /D) is ~ 0.06 Re
* This is small in turbulent flow (L;, /D ~ 6-10)

» Since velocity profile is same, it implies that wall shear
is same or friction factor is constant along length

Fully Developed Flow-11
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* The entrance length (L, /D) is ~ 0.05 Re Pr

* The entrance length is large for oils (Pr>>1)
* For turbulent flow L, /D ~ 10

e In the fully developed region Nu is constant (h = constant)

Thermodynamic Mean Temperature-I

* This is also called bulk coolant temperature or mixing
cup temperature or mixed mean temperature

» Since average mean temperature will be mass
weightec
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e If Cisconstant then
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Thermodynamic Mean Temperature-11

* Integration over a length of pipe gives

= [pc,uTdA = [pc,uTdA +q"PAx
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* For steady flow and constant c,, when we shrink the
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Features for Constant Heat Flux Case-Ij

¢ The last equation in previous slide implies that the
mean temperature varies linearly for constant heat flux
case.

¢ In ducts since velocity of fluid at wall is zero
" dT , dT
Qou = —k—— = qip =k ——=h(Tyu — Thua )
dr dr
e This will permit experimental evaluation of h

* For constant heat flux case, in fully developed region

Tyan — Ty = constant

* The above implies that for constant heat flux case the
wall temperature would also vary linearly




Features for Constant Heat flux Case-II
With the assumption of fully developed flow and h
being constant, we can derive the temperature

distribution
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be determined =
= — - 4! = constant

Boundary condition that T; = Tz at x =0
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Continuity Equation
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Laminar Flow in Pipes-I
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e rV,isindependent of r
Since V. atr=R is 0, V,is 0 everywhere

Hence there is only V, =V, (r)

Features for
Constant Temperature Case

¢ For constant temperature case
Boundary condition

4P _ h(Ty ~Ty)P
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Laminar Flow in Pipes-Ill
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Laminar Flow in Pipes-IV

Transposing r, we can write

d ( dv, j 1 dp
“lr —r— £
dr\ dr ndz
Integrating once with r
AV, _(1d0)7
dr (pdz)2
Using the boundary condition that flow is symmetric as r—0
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Laminar Flow in Pipes-V
Transposing r, we can write
LAV, _[1dpr
Tar \pdz)2
Integrating with r
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Using the boundary condition V,=0 at r=R
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Laminar Flow in Pipes-VI

¢ Velocity distribution is parabolic

V,=V,(max) atr=0

2
-~ V, (max)= R—(— @J
4u\ dz

=> v, :Vz(max)[ ;2]

Laminar Flow in Pipes-VIII

Average Velocity
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Laminar Flow in Pipes-IX
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Shear Stress

d
d—pj Direction is Negative as dp/dz is negative

T
2
Force Balance
r( d
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2\ dz M ——
Note the answer is same, as directionof T p — [ p+dp
is implicitly assumed in force balance ) L

Laminar Flow in Pipes-X

Fanning Friction Factor
* Fanning Friction factor can be calculated as follows
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Laminar Flow in Pipes-XI

Pressure Drop

From force balance

e
2\ dz

(g 2y _dn, _dbosove) ahvre)

dz) R D D 2D
Vv 2 32uV,

:49\/: [ lf“ ] :# Linear dependence with velocity
2D |pV,D D

32uV,L
—Ap= uzz




Some Aspects of Fully Developed
Thermal Conditions-I

* Mathematically the fully developed state is
represented by

O Tw=T 5 o Ow=D L E[T‘” jﬂ(z)
9z\ Ty Ty (Ty —Ty) ar Ty

» Since Ty, and Ty are not functions of r, we can write

1 )
! i(—T)#f(z) = k—(-T)=f(2)
Ty —Tg or Ty -Tg or
qf,u‘ h Heat transfer coefficient is not a
K(Ty — T, a2 =1 *1@  function of z, if kis constant

Laminar Heat Transfer in Pipes-I

Assumptions

*  We will derive this for constant heat flux case
* Fully developed velocity and temperature

» Constant fluid properties

e Axi-symmetric flow

* No body force

Laminar Heat Transfer in Pipes-lI

¢ For constant heat flux, and h not a function of z
implies
Gou I _ Ty
h 0z 0z

* For fully developed flow, we had stated that

=(Ty -Tg)= Constant =

o Ty -T 9 dTy, T
2 =0 =2(Ty-T)=0 ==
Bz[waTBj Daz( wT) = dz 0z

o oy e

L dz oz
¢ As we had shown that the bulk coolant temperature
is linear, this implies that the first derivative is
constant and second derivative is zero
Ogl, | 0al L oL
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Laminar Heat Transfer in Pipes-ll|

e The governing energy equation is
//BT aT J1agar) o),
“p ot az rar or 2%
[v aTj aia( aTj
oz ror\ odr

* Employing the velocity distribution derived earlier
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Laminar Heat Transfer in Pipes-lI
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Laminar Heat Transfer in Pipes-IV

4q” 4 2
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kR 4 16R%? 16
» Since Ty, is not explicitly not known, we will link it
with Ty, which is known at any axial location
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Laminar Heat Transfer in Pipes-V
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Laminar Heat Transfer in Pipes-VI

» For constant temperature case it is a bit more messy

*  We shall state without going through this messy proof

that
_ For constant temperature case

¢ The above cases were for laminar heat transfer

¢ The heat transfer coefficient increases as turbulent
sets in

*  We use empirical equations obtained through
experiments

Turbulent Heat Transfer in Pipes-I

* We had shown in Nucl 350 that using the Karman’s
university velocity profile friction factor was shown to be

\E =2.05log(Re T )-1.1

» Using large experimental data this was modified as
1
\E =(2.01ogRe T -0.8)

* A composite relation was derived by Colebrook for
both rough and smooth pipes as

1 e/D 251
Z=-20logl ——+
\E g( 3.7 Reﬁ]

Turbulent Heat Transfer in Pipes-I

Moody’s Chart

Turbulent Heat Transfer in Pipes-lI

* For computer calculations the following relations are

useful
_64
Re

() R
P 2| 37 Re For Re > 2300

* The second equation can be approximated for smooth
pipes as

f For Re < 2300

f=0.316Re™®% For 2300 < Re < 2x10°

f =0.184Re™®? For Re > 2x10°

Turbulent Heat Transfer in Pipes-IV,

* We had introduced Reynolds and modified Reynolds
analogy earlier for laminar flows

* The friction coefficient introduced is same as Fanning
friction factor and is four times smaller than Darcy’s

friction factor

fDarg
— — cy
Cf _fFanning - 4

 If we use the second equation for the turbulent flows
and employ modified Reynolds analogy, we get

-0.2
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Turbulent Heat Transfer in Pipes-V

= Nu =0.023Re*® pr'’?

* The above equation is modified to give the Dittus-
Boelter Equation and is the most common correlation
used in turbulent flows

08 1.0 n = 0.4 for heating (Ty,>Tg),
= Nu=0.023Re™" Pr n = 0.3 for cooling (Ty <Tg)

* The properties are calculated at Mean Bulk coolant
temperature

* The validity of the above has been checked for
0.7 <Pr<160 It is about +/- 15%

Rep, > 10,000
L/D > 10

Turbulent Heat Transfer in Pipes-VI

» For High temperature difference between the wall and
the bulk fluid, Sieder-Tate equation is mostly used

0.14
Nu = 0.027 Re®® Pr‘”[i]
Hw

* The properties are calculated at Bulk Coolant
temperature, except for i, that is taken at wall Temp.

» The validity of the above has been checked for

0.7<Pr< 16’700 It is about +/- 15%
Re;, > 10,000
L/D > 10

For more accurate equations, one can refer your book and other quoted
literature

Heat Transfer at Entrance Region

In the developing region heat transfer

coefficient is larger. Solutions in

graphical form and fitted equations I sy e |
are available. Refer book for details
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Review of Heat Transfer in Internal
Passages

* Ininternal passages, boundary layers develop and
merge

e This leads to fully developed regions

* In the developed region, both friction factor and
Nussselt number are constant

¢ In laminar flow, the values of Nu = 4.36 for constant
wall heat flux case and is 3.66 for constant wall
temperature case.

* Modified Reynolds analogy predicts the Nusselt
number in turbulent case. Correlations have been
presented

Heat Transfer in Complex Passages

¢ In fluid mechanics we have seen that we could use
circular tube correlation by introducing the concept

of hydraulic diameter,
B 4 Area
" Wetted Perimeter

¢ In turbulent flow the method works reasonably well

* However, specialized correlations exist for several
shapes in literature and they may be used for better
prediction

Convective Mass Transfer

* The concepts developed for heat transfer hold good for
mass transfer as the governing equations are identical
* The bulk vapor density is defined as

[paV,dA
A
V,A
¢ Local mass flux is defined as
Il” = hm(pAA,s _pA,m)

» Relations for Sherwood numbers can be expressed as

pAA,m -

Shp, =3.66 For laminar flow Shp, = 0.023Re*8 5¢ %4

For turbulent flow




