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Heat Transfer in Circular ducts

• Flow inside passages is the most common application of 

Fluid Mechanics and heat transfer

• Flow and heat transfer in between rod bundles are the 

most common application in Nuclear Engineering

• When velocity increases beyond a critical value, several 

whirls called vortices are formed

• This is called Turbulent Flow. In this case the velocity 

and temperature continuously fluctuate with time

• The transition to turbulent is governed by the Reynolds 

number 

• Its value in circular ducts is typically 2300  

Fully Developed Flow-I

• This is small in turbulent flow (Lh /D ~ 6-10)

• The non-dimensional entrance length (Lh /D) is ~ 0.06 Re

• Since velocity profile is same, it implies that wall shear 

is same or friction factor is constant along length 

• It implies that the velocity profile does not change along 

length

Fully Developed Flow-II

• The entrance length (Lt /D) is ~ 0.05 Re Pr

• In the fully developed region Nu is constant (h = constant)

• The entrance length is large for oils (Pr>>1) 

• For turbulent flow Lt /D ~ 10

Thermodynamic Mean Temperature-I

• This is also called bulk coolant temperature or mixing 

cup temperature or mixed mean temperature

• Since average mean temperature will be mass 

weighted
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• For steady flow and constant cp, when we shrink the 

length to 0, we get

Features for Constant Heat Flux Case-I

• The last equation in previous slide implies that the 

mean temperature varies linearly for constant heat flux 

case.

• In ducts since velocity of fluid at wall is zero
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• This will permit experimental evaluation of h

• For constant heat flux case, in fully developed region 

Twall – TB = constant

• The above implies that for constant heat flux case the 

wall temperature would also vary linearly
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• With the assumption of fully developed flow and h 

being constant, we can derive the temperature 

distribution
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Features for Constant Heat flux Case-II Features for 

Constant Temperature Case
• For constant temperature case
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Laminar Flow in Pipes-I

• V = V(r,z)
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• rVr is independent of r

• Since Vr at r = R  is 0, Vr is 0 everywhere

• Hence there is only Vz = Vz (r)

Continuity Equation

Laminar Flow in Pipes-II
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Laminar Flow in Pipes-III
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Laminar Flow in Pipes-IV

Integrating once with r
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Transposing r, we can write

Using the boundary condition that flow is symmetric as r→0
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Laminar Flow in Pipes-V

Transposing r, we can write
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Laminar Flow in Pipes-VI

• Velocity distribution is parabolic
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Laminar Flow in Pipes-VIII
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Laminar Flow in Pipes-IX
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Fanning Friction Factor

• Fanning Friction factor can be calculated as follows
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Laminar Flow in Pipes-X
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Laminar Flow in Pipes-XI

Pressure Drop

From force balance
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Some Aspects of Fully Developed 

Thermal Conditions-I

• Mathematically the fully developed state  is 

represented by
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Heat transfer coefficient is not a 
function of z, if k is constant

Laminar Heat Transfer in Pipes-I

• We will derive this for constant heat flux case

• Fully developed velocity and temperature

• Constant fluid properties

• Axi-symmetric flow 

• No body force 

Assumptions

Laminar Heat Transfer in Pipes-II

• For constant heat flux, and h not a function of z 

implies
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• As we had shown that the bulk coolant temperature 

is linear, this implies that the first derivative is 

constant and second derivative is zero
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Laminar Heat Transfer in Pipes-III
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• Employing the velocity distribution derived earlier

• The governing energy equation is
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Laminar Heat Transfer in Pipes-III

Using the condition that at 

r=0, ∂T/ ∂r = 0 implies c1 = 0

• Using the condition, T = TW at r = R, we get

22

42

W c
R16

R

4

R

kR

q4
T +













−

′′
=⇒

Laminar Heat Transfer in Pipes-IV
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• Since TW is not explicitly not known, we will link it 

with TB, which is known at any axial location
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Laminar Heat Transfer in Pipes-V

36.4NuD =⇒

For constant heat flux

Laminar Heat Transfer in Pipes-VI

• For constant temperature case it is a bit more messy 

• We shall state without going through this messy proof 

that 

66.3NuD =⇒ For constant temperature case

• The above cases were for laminar heat transfer 

• The heat transfer coefficient increases as turbulent 

sets in

• We use empirical equations obtained through 

experiments

Turbulent Heat Transfer in Pipes-I
• We had shown in Nucl 350 that using the Karman’s

university velocity profile friction factor was shown to be

( ) 1.1fRelog05.2
f

1
−=

( )8.0fRelog0.2
f

1
−=

• Using large experimental data this was modified as

• A composite relation was derived by Colebrook for 

both rough and smooth pipes as









+

ε
−=

fRe

51.2

7.3

D/
log0.2

f

1

Moody’s Chart

Turbulent Heat Transfer in Pipes-II

• For computer calculations the following relations are 

useful

Re

64
f = For Re < 2300














+







 ε
−=

Re

9.6

7.3

D/
log8.1

f

1
11.1

For Re > 2300

Turbulent Heat Transfer in Pipes-III

• The second equation can be approximated for smooth 

pipes as

25.0Re316.0f −= For 2300 < Re < 2x105

2.0Re184.0f −= For  Re > 2x105

Turbulent Heat Transfer in Pipes-IV

• We had introduced Reynolds and modified Reynolds 

analogy earlier for laminar flows

• The friction coefficient introduced is same as Fanning 

friction factor and is four times smaller than Darcy’s 

friction factor 

4

f
fC

Darcy

Fanningf ==

• If we use the second equation for the turbulent flows 

and employ modified Reynolds analogy, we get 

3/1

2.0
2.0

f

PrRe

Nu
Re023.0

8

Re184.0

8

f

2

C
==== −

−
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Turbulent Heat Transfer in Pipes-V
3/18.0

PrRe023.0Nu =⇒

• The validity of the above has been checked for

0.7 < Pr < 160 

ReD > 10,000 

L/D > 10

It is about +/- 15%

• The properties are calculated at Mean Bulk coolant 

temperature

• The above equation is modified to give the Dittus-

Boelter Equation and is the most common correlation 

used in turbulent flows

n8.0 PrRe023.0Nu =⇒
n = 0.4 for heating (TW>TB), 
n = 0.3 for cooling (TW <TB)

Turbulent Heat Transfer in Pipes-VI

• For High temperature difference between the wall and 

the bulk fluid, Sieder-Tate equation is mostly used

• The validity of the above has been checked for

0.7 < Pr < 16,700 

ReD > 10,000   

L/D > 10

It is about +/- 15%

• The properties are calculated at Bulk Coolant 

temperature, except for µw that is taken at wall Temp.

14.0

W

3/18.0 PrRe027.0Nu 










µ

µ
=

For more accurate equations, one can refer your book and other quoted 
literature

Heat Transfer at Entrance Region

In the developing region heat transfer 

coefficient is larger. Solutions in 
graphical form and fitted equations 

are available. Refer book for details

14.0

W

3/1

D
D

D/L

PrRe
86.1Nu 









µ

µ








=

For constant T and

2
D/L

PrRe
14.0

W

3/1

D ≥








µ

µ









Review of Heat Transfer in Internal 
Passages

• In internal passages, boundary layers develop and 

merge

• This leads to fully developed regions

• In the developed region, both friction factor and 

Nussselt number are constant

• In laminar flow, the values of Nu = 4.36 for constant 

wall heat flux case and is 3.66 for constant wall 

temperature case. 

• Modified Reynolds analogy predicts the Nusselt

number in turbulent case. Correlations have been 

presented

Heat Transfer in Complex Passages

• In fluid mechanics we have seen that we could use 

circular tube correlation by introducing the concept 

of hydraulic diameter,

PerimeterWetted

Area4
Dh =

• In turbulent flow the method works reasonably well

• However, specialized correlations exist for several 

shapes in literature and they may be used for better 

prediction

Convective Mass Transfer

• The concepts developed for heat transfer hold good for 

mass transfer as the governing equations are identical

AV

dAV

z

A

zA

m,A

∫ρ
=ρ

• The bulk vapor density is defined as

• Local mass flux is defined as 

( )m,As,Amhn ρ−ρ=′′

• Relations for Sherwood numbers can be expressed as  

66.3Sh D = For laminar flow
4.08.0

D ScRe023.0Sh =
For turbulent flow


