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Free Convection

• Fluid motion generated due to density changes is 

called free convection

• The word free refers to  absence of a mechanical 

device to drive the flow.

• Free convection or natural convection plays an 

important role in the safety of nuclear reactors as it is 

a passive means of heat removal

• We will see the  important case of flow in a vertical 

plate and study the empirical correlations for some 

common configurations

Onset of Natural Convection

• The fluid convection is started due to instability of flow

• Heavier fluid sitting on top of a lighter fluid is 

inherently unstable and any perturbation tumbles the 

fluid.

• The topic of instability is quite involved and so will be 

deferred to a graduate level course

The Governing Equations-I

• The velocity distribution has a characteristic shape

• Since velocity and temperature are intimately coupled, 

there is one boundary layer thickness

• Boundary layer assumptions are valid 

• One of the standard assumption invoked 

is called Boussinessq approximation

• This states that the density variation 

with temperature need to be accounted 

only in the body force term of the 

momentum equation

The Governing Equations-II
• Thus the governing equations are: 
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• Since there is no pressure gradient normal to the flow, 

the longitudinal pressure gradient inside the Boundary 

layer will be same as out side

g
x

p

x

p
∞

∞ ρ−=
∂

∂
=

∂

∂

• As temperature changes are not high, the equation of 

state is written in a linear form as follows

The Governing Equations-III

• Thus the x momentum equation can be simplified as 
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• The above approximation is valid only for moderate 

changes in temperatures
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The Governing Equations-IV

• Introducing the definition of the volumetric expansion 

coefficient (isobaric)
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• Therefore momentum equation can be written as
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The Governing Equations-V
• Thus the governing equations are: 
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• If we non-dimensionalize the equations using  

x* = x/L, y* = y/L, u* = u/uref, v* = v/vref, T* = (T-T
∞
) /(TW-T

∞
)

We get,

The Governing Equations-VI
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• Since we do not have a reference velocity, the 

scale chosen is, uref = ν/L
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The Governing Equations-VII

• GrL is called the Grashof Number and represents the 

ratio of buoyancy force to the viscous force

• From the governing equations we can deduce that 

NuL = f (ReL, Pr, GrL)

• With the definition of the velocity scale we 

introduced, ReL will take the form
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• Hence, NuL = f (GrL, Pr)

The Governing Equations-VIII

• If however, velocity scale existed then the parameter 

GrL/ReL
2 represents the importance of gravity term

• If GrL/ReL
2 >>1 gravity term is dominant and is 

called free convection

• If GrL/ReL
2 <<1 gravity term is weak and can be 

neglected and we call this forced convection

• If GrL/ReL
2 ~1 we call this as mixed convection as 

forced and free effects are present

The Governing Equations-IX

• The equation can be solved by both Similarity 

method as well as integral method

• Both are messy and involves considerable algebra

• So we shall look at the correlations and shall only 

apply them

Correlations for Natural Convection-I

• The similarity solution leads to the following 

Correlation
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• Where, the term f(Pr) is given by:
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Correlations for Natural Convection-II

• A very common empirical equation used in laminar 

flow is
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• Often for design purposes, we need the average 

Nusselt number. This can be obtained by integration 

as we have done for Forced convection 

LL Nu
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Correlations for Natural Convection-III

• Transition to Turbulence

� Amplification of disturbances 

depends on relative magnitudes of 

buoyancy and viscous forces.

� Transition occurs at a Critical Rayleigh

Number. Rax,c ~ 109

� Rayleigh Number is defined as
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Correlations for Natural Convection-IV

• Empirical Correlation (Churchill and Chu)
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• In horizontal plates, the physics is a bit different 

s
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Hot face 
upward
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downward

Correlations for Natural Convection-V

• The correlation for the heated wall upward is 

4/1
LL Ra54.0Nu = For 104 < RaL < 107

3/1
LL Ra15.0Nu = For 107 < RaL < 1011

• The correlation for the heated wall downward is 

4/1
LL Ra27.0Nu = For 105 < RaL < 1010

• Similar correlations are available for inclined plates

Correlations for Natural Convection-VI

• Correlation for circular cylinder
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RaD < 1012

• Similarly correlations are available for many geometries


