Introduction to Radiation-I
* All bodies at T > 0 K emit electro magnetic radiation

 This is due to oscillations and transitions of
electrons from different energy levels

* Emissions reduce the thermal energy levels and
would continuously cool unless sustained by
energy input

» Radiation can be intercepted and absorbed and this
will account for increase in energy

* Emission for gas or semi-transparent solids and
liquids is a volumetric phenomenon. However, for
a opaque solid and liquid it is a surface
phenomenon

Introduction to Radiation-II

* Electromagnetic Radiation Characteristics

» Electromagnetic radiation can be viewed as particles as
well as waves condition.

» When considered as waves, the wavelength and frequency
characterizes the radiation
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Introduction to Radiation-IIT

» Wavelength (X) and frequency (v) are related to the velocity
(c) by the expression

c=Av
» Energy of the radiation is related to frequency. Higher the
frequency, higher the energy
» The velocity of the electromagnetic is constant irrespective
of the frequency and is equal to 2.998 x 10% m/s

» Thermal radiation wavelengths range from infrared to
ultraviolet regions 0.1 <A < 100 um

Spectral
distribution

» The amount of radiation emitted by an
opaque surface varies with wavelength
and can be described by the spectrum
of the radiation

emission

Monochromatic radiation

Wavelength

Definitions-I

* Solid Angle Total hemispherical solid
dA,  rsin 8d¢ rd@ angle for a surface
do = — 5t n/22n
T r-

o= [ [sin 6d6do =27
0 o

Unit-steradian
il

/A, = r? sind d6 do

Definitions-11
* Spectral Intensity

» It is defined as rate of radiant energy emitted of wave length
between A and A+d) in a direction (8,¢) and (8 +d6,¢ +d¢)
per unit area of the emitting surface normal to this direction per
unit solid angle

dq

L.(e¢)=— 94
ne(2.6.0) dA | cos BdwdA

» The above definition can be
used to find q" when I, , is
known, as follows

A, cos 6

,,7dq 77:/2
=3 _('[

Ay Integrated

2m oo
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00

Definitions-II1

¢ Emissive Power

» This is to define the radiation emitted by a surface and the so
called hemispherical emissive power is identical to what is given
in the previous slide

T/22M o0
E(W/m?)= [ [ ] 1,.(,,0,0)cos 0sin 6d0dodA
0 00
» The spectral hemispherical emissive power is defined as

W dE m/22n
E,| ——|=—= 1 A,0,0)cos Bsin 6d6d
A(mz_“mj an Z[ Z[ re(%.0.0) ¢

¢ Diffuse Emitter

» It has been observed that many surfaces behave such that the
intensity of radiation emission is independent of direction




Definitions-1V

W n/22m
E)| —4/—— =1, (&) ] [cos Osin 6d6do =1, (A )n
m- —pm 00

e The spectral emissive power can be integrated to give

where I, = Tlx‘e(l)dk
0

E[izj = TI“ (W )rda = =1,

m 0

* Eand [, are called Total emissive power and total
intensity respectively

¢ It may be noted that E is the total heat flux, whereas, 1
is the heat flux directed in different directions

Definitions-V
¢ Similar to the radiation emission out from a surface,
we can define incident radiation called Irradiation

n/22m

Gyp= ] [1,,;(r.0,0)cos Osin 6d6d¢
0 0

G=[G; (A)dr
0

* Finally, we can define the term Radiosity, which
represents the total radiation (emitted +reflected)

n/22m
Jo= ] JTie(X,8,0)cos 0sin 6d0do
0 0
] =

[1, ()dn

Black Body Emission-I

» Itis an idealized body with the following characteristics
» Absorbs all radiation incident on it

» Emits maximum energy (for a given Temperature)

» It is a diffused emitter

« Visible spectralregion

¢ The spectral distribution of ¥
the blackbody emissive
power (determined
theoretically and confirmed
experimentally) is g1

power, ., Win'-um)

Spectral emissi

C
E; (A, T)=mnl, ,(A,T)= 1
ro )=l ) 2 (exp( C, /AT)—1)

C, =3.742 x10* W (um)* /m? 107

C, =1.439 x10 *pm - K
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Black Body Emission-II

¢ The maximum wavelength of the spectrum can be
described by Wien’s Displacement Law

A T = 2898 um — K

max

* The total emissive power of a black body can be
obtained as
C 1

E,(T)=nl,(T)= [ ————dA=0T*
° ’ ng(cxp(CzllT)—l)
Stefan-Boltzman Law Where 0=5.67x108 W/m2-k4

* The fraction of radiation emitted between wavelength

(0-2) is given by }Ex L

Fo-a) = 074 =f(AT) Tabulated in Book
cT

Emissivity
¢ The Surface emission from a real surface is connected
to a black surface using the term emissivity
« Its definition varies depending on context

* The spectral directional emissivity is defined by

_L.(1,0,0,T)
€1.0,0(1.0,0.T) = Lo
« Total directional emissivity is defined by ~
_ Le(8,0,T)
20,(0.0.T) = 20—

* The simplest of all, the total hemispherical emissivity

A, THE A, T)dA
E(T) ggx( ) x,b( )

e(T) = =
E,(T) E,(T)

Kirchoff’s law

* One form of Kirchoff’s law states that
€y = 0y
* We shall not worry about its proof in this course

» The surfaces that satisfy the condition (¢ = a) is called
a Gray Surface

» If a surface is opaque, then T =0

> a+p=1 >p=l-a =p=1-¢




Problem 12-2

A diffused surface horizontal A, (104 m?) has a total emissive
power of 5 x 10* W/m2. The radiation from this surface is

intercepted by another vertical surface A, (5 x 104 m?) as shown.

Find Irradiation G on A,
I, =E/n

Amount of heat from A to Ay=q,,= 1., A; Cos 6, 0,
®,,= (A, Cos 0,)/r,?
Hence q,,=1,; A} Cos 6, (A, Cos 6,)/r,?

G2 = Q1.2/A2 ny /Ag = X104 m?
ny X
G,=2.76 W/m? 0= a0
./’/
.~
~rp=05m
~ e
Aq=10%m? -
E} = 5x10¢ Wim? — 04=60°

Problem 12-6

Consider the solar radiation that falls in the form of direct
radiation of 1000 W/m2 incident at an angle of 30° and a

diffused radiation of 70 W/m2-Sr What is the solar irradiation
on the surface of earth

Qir=1000W, /mz\'\\ff& 30°
A‘rA T~ 70W/mz-sr

The total irradiation consists of two parts; direct and diffused

Since the direct radiation consists of parallel rays
G gy = que cos 8 =1000 cos( 30) = 866 W /m?

The contribution from the diffuse radiation is

Gyr =g =nx70 =219 .9W /m?
Therefore total radiation is

866 +219 .9 = 1085 .9W /m?

Problem 12-18

The radiation flux on the outer surface of the earth is measured to be
1335 W/m?2. Given that the diameters of the earth and sun are
respectively 1.29 x 107 m and 1.39 x 10° m respectively, find

a) Emissive power of the sun

b) Assuming that sun can be considered as black, estimate the
temperature of the sun

c) What is the wavelength at which the spectral power is maximum

d) If earth can be considered as a black surface and sun is the only
source of energy, find the equilibrium surface temperature

Dy=1.39x10"m \
~

Dy Y
\

11 MDe=1.29x 10°m
'

Energy balance on two concentric spheres, one on the
surface of sun

EnD® =4n(R,_. ~R.)’ qlm

b RO -RO? (1.5x10" —0.654 x107 J 1353

: D e - (139x10°)
=6.302x10” W /m?
From Stefan-Boltzmann law
T, = [3)1/4 - [76'302 X0 ]”4 = 5774 K
c 5.67 x10
From Wien’s Displacement law

2898 2898
Ao = | —— | =] =—1]=0.5
max [ T ) [5774) wm

As earth is considered black, it absorbs all the radiation
and reradiates it. Now applying energy balance Stefan-
Boltzman law, we can write

D’

2 ” q”( 4
E. 7D, = qlmn TC = Eeziez‘h =oT,

174 1/4
T :[ECJ :(71353 ) =278 K
: c 4x5.67x10 78

The temperature is warmer than this due to Greenhouse

Effect as atmosphere is transparent to short wave but not
long wave radiation




Problem 12-49

If the spectral hemispherical absorptivity is as given in the figure,
compute the solar absorptivity. If the temperature of the surface is 300 K,
compute the total hemispherical emissivity for the Diffuse Surface

1.0

a, =09

o,

0, =0.1

o l—
0.3 15
A (um)
» For solar radiation the spectral emissivity can be assumed
as Planck’s distribution with T = 5800 K
foy (M, THE, , (A, T)dA
» The absorptivity o(T) = 2

TE, ., (L. T)dA
0

09 oz
o(A
0.1 —— -3
oy Al
o o5 15 ()

0.3 1.5 oo
o [ By A T)dh+ 0o, [ E; y(A,T)dA+ a3 [Ey , (A, T)dA
a(T): 0 0.3 1.5

TE,, (. T)dn
0

_ [o,0+0, (F\Dfl.SO) ~Fo-03) )+ oy (waw) ~Fo-15) Jor*

Fo-)0T ¢
For AT= 0.3x5800 = 1740, F g, = 0.0335,
See next slide For AT = 1.5x5800 = 8700, F,, 5 = 0.8805,
Flow =1

~ 0.9(0.8805 —0.0335 )+ 0.1(1-0.8805 )JoT*
1oT*

=0.774

TapLe 12.1  Blackbody Radiation Functions

AT I\, DT LT
(um - K) Foon (pm - K -sr)”! LsOas )
200 0.000000 0.375034 x 107" 0.000000
400 0.000000 0.490335 x 107" 0.000000
600 0.000000 0.104046 % 10°* 0.000014
800 0.000016 0.991126 % 1077 0.001372
1,000 0.000321 0.118505 x 10 0.016406
1,200 0.002134 0523927 X 107° 0.072534
1,400 0.007790 0.134411 x 1074 0.186082
1,600 0.019718 0.249130 0.344904
1,800 0.039341 0.375568 0.519949
2,000 0.066728 0.493432 0.683123
2,200 0.100888 0.589649 X 10 0.816329
2.400 0.140256 0.658866 0.912155
2,600 0.183120 0.701292 0.970891
2,800 0.227897 0.720239 0.997123
2,898 0.250108 0722318 X 107* 1.000000
3,000 0.273232 0.720254 % 107* 0.997143
3,200 0.318102 0.705974 0977373
3.400 0.361735 0.681544 0.943551
3,600 0.403607 0.650396 0.900429
3.800 0.443382 0.615225 x 107 0.851737
4.000 0.480877 0.578064 0.800291

> For the given surface €, = oy

0.3 1.5 3
e [ Ey (A T)dh+¢, [ E; (A, T)dA +¢;5 [E, , (A, T)dA
0 0.3 1.5

e(T) = n
JE s (A, T)dA
0
» On similar lines we get

_ [o,0+0, (F(Dfl.SO) ~Fo-03 )+ oy (waw) ~Fo-15) Jor*
Fg_o)oT?

For AT= 0.3x300 = 90, Fp. = 0.0, 0.10-0)bT* _ |
S>e=-"" 2" -0,

For AT = 1.5x300 = 450, F g, 5 = 0.0, loT?

Fow =1

For the given surface € would have been equal to a, if the spectral
radiation would have been the same for irradiation and emission

Absorption, Reflection, Transmission

¢ When radiation is incident on a surface, it can either be
absorbed, reflected or transmitted
* Reflection can be specular or diffused

¢ The individual fractions are denoted by a, p and t

a+p+1=1

6,=0.
i Reflected 1=V
Incident fle
ray radiation of ”‘Cr';e"‘ Ref::cted
2 uniform Y ray
intensity 6,

Radiation Exchange Between Surfaces

» We shall consider only the cases in which there is no
participating media

» This implies the intervening media is either vacuum or
gases that does not interact with radiation

» Gases like H,0, CO, absorb radiation and would need

special treatment

» Similarly presence of dust would scatter and would need
special considerations

» The surfaces are assumed Isothermal, opaque, gray,
diffuse




View Factor-1

» Consider two black surfaces exchanging irradiation as
shown. As black surface is a diffuse emitter

4
= Tiei = oh
¢ The amount of heat directed to the surface j is w“
= dqi_)j =1, g;dA ; cos Gidooj_)i s i
dA jcos 6 %, 9
= dq,; = ¢dA jcos ; ——— AT,
’ R R
4 dA . cos 0.
=T o 8;dA ; ——— i
T R dA, o
=

View Factor-11

i dA jcos 8, cos 0
dg;,;=olidaee s s o

nR 2
Heat going in all Fraction going towards
directions dA,

* Therefore the total exchange from i to j shall be
dA ;dA jcos 6 cos 6 ;

4
Qissjnet) =0T AIAI R 2

it
dA ;dA ;cos 6, cos 0

[ >
Jisj _ AAj TR _F

Heat from [ to j J‘
A

il A A

Total heat emitted from i
Fraction, called View factor (F,)

View Factor-II1

* In the same way, the heat flowing from j to i can be

written as
dA ;dA jcos 6 cos 6 ;

g, =oT A, R
joi T J J
A \
¢ Note that
dA .dA ;cos 6, cos 0,
FyA; =[] — t=FjA,
AA; TR

i

Reciprocity Relation

* The net heat transfer from i to j can be computed as

Qisjmet) = disj ~ djoi

View Factor-1V

* View factor F,, can be interpreted as the fraction of
radiation leaving surface 1 and intercepted by surface 2

* View factor F; is not necessarily 0. For instance a
concave surface will have a finite F,;

¢ For a closed enclosure with
n
n-surfaces we can write > F; =1
j=1

F,+F,+.+F, =1, E; +F,+.+E,, =1, etc.

View Factor-V

* View factor F;,=F,; + F,,, if surface 2 is made of
surfaces 3 and 4. This means that view factor for the
whole is sum of the view factors of the parts

* View factors with symmetric surfaces will be same

Fj,=F;

Radiation Exchange Between Opaque,
Diffuse and Gray Surfaces-I

* We had just derived the radiation exchange between
black surfaces as

qi-2 = G(T14 - Tz4 )A 1Fi
¢ Now we shall derive the same for real surfaces that have
a finite reflectivity (p =1-#0)
e Itis called Radiosity (J)-Irradience (G) method

* We shall first build the electrical analogy to get useful
physical insight and then introduce matrix method




Radiation Exchange Between Opaque,
Diffuse and Gray Surfaces-I

» Consider N surfaces interacting with each other

 For every surface we shall
define q; such that

CH :Ai(Ji_Gi)
S

1 2 q
J
Ji b Note g is external heat that has to be supplied
G, G, to keep the surface at T;

* Note that q will be positive for heat giving
surface and negative for heat receiving surface

Radiation Exchange Between Opaque,
Diffuse and Gray Surfaces-II
* By definition

Ji=(E;+p;G;) =(E;+(1-0;,)G;)
= (&Ey +(1-£,)G;)

* Since G: :[J;— 2‘»} beacuse q; = A;(J,-G;)

q;
= I :[x—:iEbi +(1—€,)[Ji—A—‘D
= Y =eBy+(f-e)] - (-g) D

Al

= e (Ey-J,)= (1—8,):‘
i

Radiation Exchange Between Opaque,
Diffuse and Gray Surfaces-II

Euw —Ji

= q; =W
giA;

* The above equation suggests a network analogy as
shown in the figure
Superimposed real

/ surface

E v J;
1-g:
A}

Idealized black surface __—
at the same temperature

Radiation Exchange Between Opaque,
Diffuse and Gray Surfaces-III

e The fraction of J, leaving the surface and intercepted by the
second surface will be J, F,

* Similar amount of heat intercepted by surface 1 from J, will be
1, By
¢ The net heat transfer from surface 1 to 2
can be written as 1 2
Qi) = APt — AL T,

=AF,J,-13)

I-¢g 1 I-g,

* Thus the network can be €A, FpA, £A,
constructed as shown % \N\‘J—I\/Wj/:/\/ /7—' 9,

“~Ep —Epp—

Radiation Exchange Between Opaque,
Diffuse and Gray Surfaces-1V

* The problem can now be extended to a N-surface
interaction very easily

¢ As an illustration, three body
interaction is shown E, 1-g 1-¢, Ev3

¢ The electrical network shall be

* These problems can be easily solved €A,
by matrix methods Ey,

Re-Radiating Surface

&

¢ Often in radiation heat transfer %
between two surfaces, we ":‘
encounter a third surface, 6
which simply re-radiates (there
is no net heat transfer as far as Ep;
that surface is considered)

* The net heat transfer q, =-q,
can be found by

Ey —Epy

l-¢ 1-& 4
g A  £,A,

11 . 1
where R FoA, 1 1

—
F13Al F23A2 2

q; =




Matrix Method for N-surface interaction-I

¢ When the number of surfaces are large, matrix method is
the ideal choice

e The algebra is straight forward, but the solution has to be
obtained using numerical methods

N
q; :AiJi_sziJjAj
=1

 Using reciprocity relation, we can write

N N
qi = A - X FT A, :Ai[Ji_ZFUJJ]
= =t

Matrix Method for N-surface interaction-II

* Noting that sum of all F;; = 1, we can write

N N N N (T -T))
= q; = A, ZIFUJi —ZIFUJJ = ZlAiFU(Ji -1)= _2117
= = = =
AiFy
. Ey, -7
* We had shown previously that q; = aQ )
—g,
( ElAi J
» Hence Eu — i :i(J‘_J‘)
(1-¢)) N
€A Ay

 If all T, are known, then we can solve for J. and hence for g,

Matrix Method for N-surface interaction-II1

 In case the heat is known as in the case of re-radiating
surface or electrically heated surface, then for that surface,
we can use
N S CI I
i=1 1
A .F.

it

¢ The system of equation of the form shown below will be
solved by numerical methods.

[Coetf }1,}={RHS }

Example-1
* Calculate the view factor of the inner surface of the
conical cavity onto itself in terms of the semi-
vertex angle 0

* Let the curved surface be labeled 1 and the base be
labeled 2
Fj +Fp =1

Similarly F,; + Fp, =1
Bt Fy, =0 = F, =1
0

Since F,; A, = F, A,

A A i
= F, =F —2=—"2
A, A,
2
2
- F, Ay mhtn®)” o
A, m(h tan 6)(h /cos 0)

Example-2

¢ Calculate the heat exchange by radiation per unit area between
two parallel infinite surfaces maintained at T, and T, The surfaces
can be assumed gray, diffuse each with emissivity &

* Since the plates are infinitely long, F =1 |

» Constructing the electrical network and
noting that €, =¢, =¢, A;=A,=A

_ 6(T14—T24)
R T D T e 1 I-g
+ + A, FoA, 6A,
eA  FpA €A EI\A;AJ\I/\A}L\/E\Z//T
T G(T14 —T24) “—Ey —Epy—

Example-3

¢ If in example 2, we insert another identical plate, what is the effect
of heat transfer per unit area

* Since the plates are infinitely long, F ;= F3,=1

* From previous example

9i1-3 _ G(T14 —T34) ! 8 2
A 2
Z1
€
d3-2 _ 6(T34 ‘T24)
A 2_1
€

e Sinceq3=q3, = (T14 —T34)= (T34 —T24)




SOt =Tt et =Tt =D ;TZ
4 4
= 913 _ 932 _ G(Tl -T) )/2
A 2
1
€

¢ Heat cut down by half

 This is the principle of radiation shield
¢ The electrical network for a general case be drawn
as shown below

Ep Ji J31 Eps J3,2 J2 Epp
> NN NN NANACNANBANAN NN
o l-g; 1 l-g5, 1l-g5, 1 l-¢,
&4, AtFi3 85143 €504 AF, &4,

Example-4

» Show that when a diffuse-gray surface of area A, with emissivity
¢, and temperature T, is surrounded by a large isothermal surface
at T, and emissivity €, the net heat lost by the surface is given by

qi-2 = c7“31(T14 —T24)A1

1-e, 1 l-g,
gA; FpA A,

(‘_ S N

Example-5

Calculate the heat exchange by radiation per unit area between
two thick parallel infinite surfaces maintained at 40°C (e=0.4) and
20°C (e=0.5) The surfaces can be assumed gray, diffuse and with
thickness and thermal conductivities of 30 cm (k=0.5 W/m-K) and
20 cm (1 W/m-K) respectively

For slab-1 13 293
a, _kB13-T)_050613-T,) @ !
A L, - 0.3
e For sla?—Z ) ) T,
q,  k,(T,-293) 1(T,-293 ®
-, 1 l-g,

a2
A L, 0.2
« For radiation heat transfer €A, FoA, €A,

A
4y _ G(Tl47T24) @ { M
A l-g 1 1-8y By —Epp—

« Note that d1-92 _ di-2
A A A

¢ Equating the first two, we get

05613 -1) _1(1,=293) 1 _j190 —31,
0.3 0.2

* Substituting T, in Equation (3), we get

4., _ 5.67x10 ’8((1192 -3T1, ) —Tz4)

A 1-04 1 1-0.5
+—+
0.4 1 0.5

_5.67 x10 #1192 - 3T, )" —TZ4)

35 @

« Iterating on T, to get same g/A in eqs (3) and (4) leads to
T, =295.92 K, q=14.6 W/m?




