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Introduction to Radiation-I
• All bodies at T > 0 K emit electro magnetic radiation 

• This is due to oscillations and transitions of 

electrons from different energy levels

• Emissions reduce the thermal energy levels and 

would continuously cool unless sustained by 

energy input

• Radiation can be intercepted and absorbed and this 

will account for increase in energy

• Emission for gas or semi-transparent solids and 

liquids is a volumetric phenomenon. However, for 

a opaque solid and liquid it is a surface 

phenomenon

Introduction to Radiation-II

• Electromagnetic Radiation Characteristics

� Electromagnetic radiation can be viewed as particles as 

well as waves condition.

� When considered as waves, the wavelength and frequency 

characterizes the radiation

Introduction to Radiation-III

� Thermal radiation wavelengths range from infrared to 

ultraviolet regions 0.1 < λ < 100 µm

� The amount of radiation emitted by an 

opaque surface varies with wavelength 

and can be described by the spectrum 

of the radiation

� Wavelength (λ) and frequency (ν) are related to the velocity 

(c) by the expression

λν=c

� Energy of the radiation is related to frequency. Higher the 

frequency, higher the energy

� The velocity of the electromagnetic is constant irrespective 

of the frequency and is equal to 2.998 x 108 m/s

Definitions-I
Total hemispherical solid 

angle for a surface 
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Definitions-II
• Spectral Intensity

� It is defined as rate of radiant energy emitted of wave length 

between λ and λ+dλ in a direction 

per unit area of the emitting surface normal to this direction per 

unit solid angle
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Definitions-III

� This is to define the radiation emitted by a surface and the so 

called hemispherical emissive power is identical to what is given 

in the previous slide

• Emissive Power

( ) λφθθθφθλ= ∫ ∫ ∫
π π

λ

∞

dddsincos,,I)m/W(E
2/

0

2

0

e,

0

2

� The spectral hemispherical emissive power is defined as
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• Diffuse Emitter

� It has been observed that many surfaces behave such that the 

intensity of radiation emission is independent of direction
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Definitions-IV

• The spectral emissive power can be integrated to give
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• E and Ie are called Total emissive power and total 

intensity respectively

• It may be noted that E is the total heat flux, whereas, I 

is the heat flux directed in different directions

Definitions-V
• Similar  to the radiation emission out from a surface, 

we can define incident radiation called Irradiation

• Finally, we can define the term Radiosity, which 

represents the total radiation (emitted +reflected)
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Black Body Emission-I

• It is an idealized body with the following characteristics

� Absorbs all radiation incident on it

� Emits maximum energy (for a given Temperature) 

� It is a diffused emitter

• The spectral distribution of 

the blackbody emissive 

power (determined     

theoretically and confirmed 

experimentally) is 
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Black Body Emission-II

• The maximum wavelength of the spectrum can be 

described by Wien’s Displacement Law

Km2898Tmax −µ=λ

• The total emissive power of a black body can be 

obtained as
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• The fraction of radiation emitted between wavelength 

(0-λ) is given by

Where σ=5.67x10-8 W/m2-k4Stefan-Boltzman Law
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Emissivity
• The Surface emission from a real surface is connected 

to a black surface using the term emissivity

• Its definition varies depending on context

• The spectral directional emissivity is defined by

)T,(I

)T,,,(I
)T,,,(

b

e,
,,

λ

φθλ
=φθλε

λ
φθλ

)T(I

)T,,(I
)T,,(

b

e,
,

φθ
=φθε

λ
φθ

• Total directional emissivity is defined by

• The simplest of all, the total hemispherical emissivity
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Kirchoff’s law

• One form of Kirchoff’s law states that

λλ α=ε

• We shall not worry about its proof in this course

• If a surface is opaque, then τ = 0

1=ρ+α⇒ α−=ρ⇒ 1 ε−=ρ⇒ 1

• The surfaces that satisfy the condition (ε = α)  is called 

a Gray Surface
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Problem 12-2
A diffused surface horizontal A1 (10-4 m2) has a total emissive 
power of 5 x 104 W/m2. The radiation from this surface is 
intercepted by another vertical surface A2 (5 x 10-4 m2) as shown. 
Find Irradiation G on A2

Ie,1 = E/π

Amount of heat from A1 to A2 = q1-2 =  Ie,1 A1 Cos θ1 ω2-1

ω2-1 =   (A2 Cos θ2)/r2
2

Hence q1-2 = Ie,1 A1 Cos θ1 (A2 Cos θ2)/r2
2

G2 = q1-2/A2

G2 = 2.76 W/m2

Problem 12-6

SCHEMATIC:   

 

 
 

Consider the solar radiation that falls in the form of direct 
radiation of 1000 W/m2 incident at an angle of 30o and a 
diffused radiation of 70 W/m2-Sr What is the solar irradiation 
on the surface of earth

Since the direct radiation consists of parallel rays 

The total irradiation consists of two parts; direct and diffused

2
dirdir m/W866)30cos(1000cosqG ==θ′′=

The contribution from the diffuse radiation is  
2

difdif m/W9.21970IG =×π=π=

Therefore total radiation is  

2
m/W9.10859.219866 =+

SCHEMATIC:   

 

 

Problem 12-18
The radiation flux on the outer surface of the earth is measured to be 

1335 W/m2. Given that the diameters of the earth and sun are 

respectively 1.29 x 107 m and 1.39 x 109 m respectively, find

a) Emissive power of the sun

b) Assuming that sun can be considered as black, estimate the 
temperature of the sun

c) What is the wavelength at which the spectral power is maximum

d) If earth can be considered as a black surface and sun is the only 

source of energy, find the equilibrium surface temperature

Energy balance on two concentric spheres, one on the 

surface of sun  
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As earth is considered black, it absorbs all the radiation 

and reradiates it. Now applying energy balance Stefan-

Boltzman law, we can write
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The temperature is warmer than this due to Greenhouse 

Effect as atmosphere is transparent to short wave but not 

long wave radiation
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Problem 12-49
If the spectral hemispherical absorptivity is as given in the figure, 

compute the solar absorptivity. If the temperature of the surface is 300 K, 

compute the total hemispherical emissivity for the Diffuse Surface
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� For solar radiation the  spectral emissivity can be assumed 

as Planck’s distribution with T = 5800 K

� The absorptivity
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SCHEMATIC:   
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For λT= 0.3x5800 = 1740,  F(0-0.3) = 0.0335, 

For λT = 1.5x5800 = 8700, F(0-1.5) = 0.8805, 

F(0-∞) = 1

See next slide

� For the given surface λλ α=ε
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� On similar lines we get 
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For λT= 0.3x300 = 90,  F(0-0.3) = 0.0, 

For λT = 1.5x300 = 450, F(0-1.5) = 0.0, 

F(0-∞) = 1
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For the given surface ε would have been equal to α, if the spectral 

radiation would have been the same for irradiation and emission

Absorption, Reflection, Transmission
• When radiation is incident on a surface, it can either be 

absorbed, reflected or transmitted

• Reflection can be specular or diffused

• The individual fractions are denoted by α, ρ and τ

1=τ+ρ+α

Radiation Exchange Between Surfaces

� Similarly presence of dust would scatter and would need 

special considerations

� The surfaces are assumed Isothermal, opaque, gray, 

diffuse

� We shall consider only the cases in which there is no 

participating media

� This implies the intervening media is either vacuum or 

gases that does not interact with radiation

� Gases like H2O, CO2 absorb radiation and would need 

special treatment
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View Factor-I
• Consider two black surfaces exchanging irradiation as 

shown. As black surface is a diffuse emitter 

ijiii,iji dcosdAIdq →θ→ ωθ=⇒

• The amount of heat directed to the surface j is 

2
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iii,iji
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θ
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σ
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4
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View Factor-II

2
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i
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iji
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dATdq

π

θθ
σ=→

Heat going in all 
directions

Fraction going towards 

dAj

• Therefore the total exchange from i to j shall be

2
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A A

4
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σ= ∫ ∫→
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π
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∫ ∫
→

Fraction, called View factor (Fij)

Heat from I to j

Total heat emitted from i

• In the same way, the heat flowing from j to i can be 

written as 

j

2

jiji

A A

j
4

jij
A
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i j

π
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∫ ∫
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View Factor-III

• Note that

jji2

jiji

A A

iij AF
R

coscosdAdA
AF

i j

=
π

θθ
= ∫ ∫

Reciprocity Relation

• The net heat transfer from i to j can be computed as 

ijji)net(ji qqq →→→ −=

View Factor-IV

• View factor F12 can be interpreted as the fraction of 

radiation leaving surface 1 and intercepted by surface 2

• View factor F11 is not necessarily 0. For instance a 

concave surface will have a finite F11

• For a closed enclosure with 

n-surfaces we can write 1

2 3

n
n-1∑

=

=
n

1j
ij 1F

.etc,1F..FF;1F..FF n22221n11211 =+++=+++

View Factor-V
• View factor F12 = F13 + F14, if surface 2 is made of 

surfaces 3 and 4. This means that view factor for the 

whole is sum of the view factors of the parts

1

3

4

2

• View factors with symmetric surfaces will be same

1

2 3
F12 = F13

Radiation Exchange Between Opaque, 

Diffuse and Gray Surfaces-I
• We had just derived the radiation exchange between 

black surfaces as

( ) 121
4

2
4

121 FATTq −σ=−

• Now we shall derive the same for real surfaces that have 

a finite reflectivity (ρ =1-ε≠0)

• It is called Radiosity (J)-Irradience (G) method

• We shall first build the electrical analogy to get useful 

physical insight and then introduce matrix method
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Radiation Exchange Between Opaque, 

Diffuse and Gray Surfaces-I
• Consider N surfaces interacting with each other

1

i

q21

J1

J2

G1 G2

q1 q2

• For every surface we shall 

define qi such that 

( )iiii GJAq −=

Note qi is external heat that has to be supplied 

to keep the surface at Ti

• Note that q will be positive for heat giving 

surface and negative for heat receiving surface 

( )iii G)1(E α−+=( )iiii GEJ ρ+=

• By definition

( )iibii G)1(E ε−+ε=

Radiation Exchange Between Opaque, 

Diffuse and Gray Surfaces-II
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


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
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i
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i

i
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A

q
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i

i
iibii

A

q
)1()JE( ε−=−ε⇒

Radiation Exchange Between Opaque, 

Diffuse and Gray Surfaces-II

• The above equation suggests a network analogy as 

shown in the figure 

Idealized black surface 
at the same temperature

Superimposed real 

surface

biE

11

1

A

1

ε

ε−
iJ









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−
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i
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)1(
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q

Radiation Exchange Between Opaque, 

Diffuse and Gray Surfaces-III

• Similar amount of heat intercepted by surface 1 from J2 will be 

J2 F21

• The fraction of J1 leaving the surface and intercepted by the 

second surface will be J1 F12

22121121)net(12 JFAJFAq −=

• The net heat transfer from surface 1 to 2 

can be written as

)JJ(FA 21121 −=

• Thus the network can be 

constructed as shown

21

2b1b EE −
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1

A

1

ε
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22
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112AF

1

1J 2J
q1 q2

Radiation Exchange Between Opaque, 

Diffuse and Gray Surfaces-IV
• The problem can now be extended to a N-surface 

interaction very easily

1J

2bE

3bE1bE

11

1

A

1

ε
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2J

3J

112AF

1

113AF

1

223AF

1

33
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A

1

ε
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11

1

A

1

ε
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• As an illustration, three body 

interaction is shown

1

2

3

• The electrical network shall be

• These problems can be easily solved 

by matrix methods

Re-Radiating Surface
• Often in radiation heat transfer 

between two surfaces, we 

encounter a third surface, 

which simply re-radiates (there 

is no net heat transfer as far as 

that surface is considered) 

1

2

3

1J

2bE

3bE
1bE
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1

A

1

ε

ε−

2J

3J

112 AF

1

113AF

1
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1

33

3

A

1

ε
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11

1

A

1

ε

ε−

q2

q1

q3= 0

• The net heat transfer q1 = -q2

can be found by

R
A

1

A

1

EE
q

22

2
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1

1b1b
1

+
ε
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+

ε

ε−

−
=

223113

112

AF

1

AF

1

1

AF

1

R

1

+

+=where
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Matrix Method for N-surface interaction-I

• When the number of surfaces are large, matrix method is 

the ideal choice

• The algebra is straight forward, but the solution has to be 

obtained using numerical methods

∑
=

−=
N

1j
jjjiiii AJFJAq

• Using reciprocity relation, we can  write







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−=⇒

N

1j

iji

ji
N

1j
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N
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1
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Matrix Method for N-surface interaction-II

• Noting that sum of all Fij = 1, we can write

• We had shown previously that










ε
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−
=
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i
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i

A
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• Hence





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
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A
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∑
=
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iji
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• If all Ti are known, then we can solve for Ji and hence for qi

Matrix Method for N-surface interaction-III

• In case the heat is known as in the case of re-radiating 

surface or electrically heated surface, then for that surface, 

we can use

∑
=

−
=⇒

N

1i

iji

ji

i

FA

1

)JJ(
q

• The system of equation of the form shown below will be 

solved by numerical methods.

[ ]{ } { }RHSJCoeff i =

Example-1
• Calculate the view factor of the inner surface of the 

conical cavity onto itself in terms of the semi-

vertex angle θ

• Let the curved surface be labeled 1 and the base be 

labeled 2

1FF 1211 =+

1FF 2221 =+Similarly

But 0F22 = 1F21 =⇒

Since
112221 AFAF =

1

2

1

2
2112

A

A

A

A
FF ==⇒

θ−=
θθπ

θπ
−=−=∴ sin1

)cos/h)(tanh(

)tanh(
1

A

A
1F

2

1

2
11

θ
1

2

h

Example-2
• Calculate the heat exchange by radiation per unit area between 

two parallel infinite surfaces maintained at T1 and T2. The surfaces 

can be assumed gray, diffuse each with emissivity ε

21

2b1b EE −

11

1

A

1

ε

ε−

112AF

1

22

2

A

1

ε

ε−

• Since the plates are infinitely long, F12=1

• Constructing the electrical network and 

noting that AAA, 2121 ==ε=ε=ε

( )

A

1

AF

1

A

1

TT
q

12

4
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4
1
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ε

ε−
++

ε
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−σ
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( )
1

2

TT

A

q
4

2
4

121

−
ε

−σ
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Example-3
• If in example 2, we insert another identical plate, what is the effect 

of heat transfer per unit area

• Since the plates are infinitely long, F13= F32= 1

21 3( )
1

2

TT

A

q
4

3
4

131

−
ε

−σ
=−

• From previous example

( )
1

2

TT

A

q
4

2
4

323

−
ε

−σ
=−

• Since q1-3 = q3-2 ( ) ( )4
2

4
3

4
3

4
1 TTTT −=−⇒
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4
2

4
1

4
3 TTT2 +=⇒

2

TT
T

4
2

4
14

3

+
=⇒

( )
1

2

2/TT

A

q

A

q
4

2
4

12331

−
ε

−σ
==⇒ −−

• Heat cut down by half

• This is the principle of radiation shield

• The electrical network for a general case be drawn 

as shown below

Example-4
• Show that when a diffuse-gray surface of area A1 with emissivity

ε1 and temperature T1 is surrounded by a large isothermal surface 

at T2 and emissivity ε2, the net heat lost by the surface is given by

( ) 1
4

2
4

1121 ATTq −σε=−

1

2
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1

A
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ε
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4
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4
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ε
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A2 Large 

( ) ( ) 1
4

2
4

11

1

4
2

4
11

21 ATT

11
1

TTA
q −σε=

+−
ε

−σ
=∴ −

F12 =1 

Example-5
• Calculate the heat exchange by radiation per unit area between 

two thick parallel infinite surfaces maintained at 40oC (ε=0.4) and 

20oC. (ε=0.5) The surfaces can be assumed gray, diffuse and with 

thickness and thermal conductivities of 30 cm (k=0.5 W/m-K) and 

20 cm (1 W/m-K) respectively
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• For slab-1
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• For slab-2

• For radiation heat transfer
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• Note that
A
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• Equating the first two, we get
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• Substituting T1 in Equation (3), we get
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• Iterating on T2 to get same q/A in eqs (3) and (4) leads to

T2 = 295.92 K, q = 14.6 W/m2


