One Dimensional Steady Solutions-I

* As a first class of problem, we now turn to one
dimensional analysis

» These are useful for large slabs, where transverse
dimensions are much larger than thickness
¢ In such cases, Temperature is only a function of x.
» This implies q" can also be only a function of x.
* From thermodynamics, at steady state
q"in = q"oy for any control volume

* This is equivalent to saying that heat
flux is constant across any plane
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One Dimensional Steady Solutions-II
 This is equivalent to saying
—kd—T =constant
dx

* The same can be very easily obtained from heat
equation
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¢ The temperature distribution is linear

One Dimensional Steady Solutions-III

» Logically, if we had two slabs
» The profile will be a piecewise straight line

¢ In this case too, the heat flux along any plane
will be constant
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* Thus, knowing T; T, k; k, L, and L, T, can
be found and hence the temperature profile

* To simplify analysis of these problems, we

T, T T, can introduce a principle similar to ohm’s law

One Dimensional Steady Solutions-1V

* Heat flow is analogous to current, as it is same in
series of slabs

» Temperature is analogous to voltage as it drives
the current
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* Thus Resistance is equivalent to L/(kA)

* g can be computed once, T; T, k; k, L; L, and A are
known. T; can then be computed once q is known

Convective Resistance

» If we also now consider convective boundary on either
sides
T, — T
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¢ Thus convective resistance is 1/(hA)
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Radiation Resistance

» If we had a radiation boundary on one side interacting with
ambient at T, T

q =ceA(T;‘ —TS“)
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=q=hA(T, -Ty)
where h, = o:se(Tm2 +TSZXTDe +Ts)
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* Thus we can say radiation resistance can be written as

1/(h,A)

* In a restrictive case of convection and radiation boundary
with the same ambient temperature, the boundary
resistance shall be 1/((h+h,)A)




Contact Resistance

* When we had put slabs together, the interface is assumed
to have one temperature

 In reality, the interface is complex and the heat transfer
mode is complex too

It can be idealized to be have a contact resistance with a
finite jump in temperature as shown

* This is obtained experimentally and is tabulated in
handbooks
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Overall Heat Transfer Coefficient

¢ When we have a series of slabs (contact resistance

neglected)
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¢ In the heat transfer literature
overall heat transfer coefficient,
U, is defined as

q=UA(T, -T.,)
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Network Analysis
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¢ Although one
dimensional analysis is
very restrictive,
sometimes it is extended
to a network
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* This methodology is fast
becoming obsolete due to
the progress in numerical
heat transfer
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One Dimensional Cylindrical Wall

* The heat equation in cylindrical coordinate for a
constant property system can be written as
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e In steady state with no heat generation and if the
system can be assumed such that T varies only along r

we can write
d kdl =0 :>rkd—T7C
dr dr dr
=rq/=C or=2mlq,=C =q,

This implies that the total heat crossing
any radial plane in the cylinder is constant

Electrical Analogy-1

dT
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Integrating between R; and R, we have

T, R, R
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Electrical Analogy-I1
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Computation of Temperature

* To compute temperature at any radius r within a
cylindrical wall with T_, T;, R, and R;, we proceed
as follows
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* Now we integrate between R; and R as follows:
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One dimensional Spherical wall

* The heat equation in spherical coordinate for a
constant property system can be written as
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This implies that the total heat crossing
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=4mq, =C =q, any radial plane in the sphere is constant

Electrical Analogy

» dT q, dr
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Integrating between R; and R, we have
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Conduction with Heat Generation

* We had analyzed one-dimensional cases in slab,
cylinder and sphere cases without heat generation

* In nuclear and other applications conduction in
heat generating body is of important significance

* The heat generation can be uniform (electrical
heating) or non-uniform (Radiation shields)

* The current crossing a plane is no longer a
constant

* The heat generation affects the temperature
distribution

1-D Slab with Heat Generation-I
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Boundary Conditions; At x=-L, T=T; At x=L, T=T

.

- i[kdl] =—q”  We shallfirst restrict to constant
dx | dx volumetric heat generation rate

Integration of the above equation leads to

= (kg] =—q"x+C,
dx

1-D Slab with Heat Generation-I1

dT  -q” p
If k can be taken as constant, then =>—=——x+C,

dx k
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Integrating once more
2k

Boundary conditions imply

Atx=-L T, =—_21 L+ (-L)+C,
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Subtracting the above equations leads to C,"=0
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Adding and simplifying leads to C, =T, +g—kL2
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1-D Slab with Heat Generation-II1

* Now if we add a clad to it we can just modify the
results in the following manner

* Now the surface of the clad temperature
will be the boundary condition for the
composite geometry

» Since no heat is generated in the clad,
the heat rate crossing every plane will be
constant and we can use the previous
concepts derived

The total heat rate crossing any clad plane is equal
to heat rate generated in one half of the fuel

q=q"AL

1-D Slab with Heat Generation-IV

* The temperature drop in clad is equal to
t _q'Lt _ q"Lt
ATclad q "AL k A ku = Tci - Tco + ku
* The temperature anywhere inside the clad can be
computed using linear interpolation as temperature

profile is linear in the clad

 If we neglect the contact resistance,
then T of fuel is same as that of T .

* The fuel temperature can be now estimated
from the equation derived previously

=T =%(L2 —x2)+T,

1-D Slab with Heat Generation-V

* The centerline temperature T, can be computed as
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* We can manipulate the above to get some interesting
results
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* This method is valid only to get T, and valid only
if k;is constant

1-D Slab with Heat Generation-VI

¢ If we have clad, contact resistance and fluid
cooling the fuel, then we can simply write
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* The Temperature profiles can be found in fuel
once T is found, by using

:T:%(Lz—xz)ns

1-D cylinder with heat addition-I

* The analysis of cylinder is similar
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Boundary Conditions; At r=0, dT/dr=0; At r=R, T=T,
d . Restricting to constant -0
ST =g et h i =
dr dr volumetric heat generation rate  §1/4r=0
Integration of the above equation leads to
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1-D cylinder with heat addition-11

First Boundary condition implies C, =0
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1-D cylinder with heat addition-III

* Now if we add a clad to it we can just modify the
results in the following manner

* The total heat rate crossing any clad radial
plane is
q=q"nR’L

* The temperature drop in clad is equal to
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1-D cylinder with heat addition-1V

¢ If we have clad, contact resistance and fluid
cooling the fuel, then we can simply write
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Note that L, being
arbitrary cancels out

1-D sphere with heat addition-1

* The analysis of sphere is similar
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Boundary Conditions; At r=0, dT/dr=0; At r=R, T=T,
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Restricting to constant
volumetric heat generation rate

Integration of the above equation leads to

1-D sphere with heat addition-1I

First Boundary condition implies C, =0
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