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One Dimensional Steady Solutions-I

• As a first class of problem, we now turn to one 

dimensional analysis

• These are useful for large slabs, where transverse 

dimensions are much larger than thickness

x

• In such cases, Temperature is only a function of x. 

• This implies q'' can also be only a function of x. 

• From thermodynamics, at steady state 

q''in = q''out for any control volume

• This is equivalent to saying that heat 

flux is constant across any plane
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One Dimensional Steady Solutions-II

• This is equivalent to saying
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• The same can be very easily obtained from heat 

equation
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• The temperature distribution is linear

One Dimensional Steady Solutions-III

• Logically, if we had two slabs

• The profile will be a piecewise straight line

• In this case too, the heat flux along any plane 

will be constant
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• Thus, knowing T1, T2, k1, k2, L1, and L2, Ti can 

be found and hence the temperature profile

• To simplify analysis of these problems, we 

can introduce a principle similar to ohm’s law

One Dimensional Steady Solutions-IV
• Heat flow is analogous to current, as it is same in 

series of slabs

• Temperature is analogous to voltage as it drives 

the current
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• Thus Resistance is equivalent to L/(kA)

21
2

2

1

1 TT
Ak

L
Ak

L
q −=






 +⇒

• q can be computed once, T1, T2, k1, k2, L1, L2, and A are 

known. Ti can then be computed once q is known 

Convective Resistance

• If we also now consider convective boundary on either 

sides
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• Thus convective resistance is 1/(hA)
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Radiation Resistance
• If we had a radiation boundary on one side interacting with 

ambient at T
∞
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• Thus we can say radiation resistance can be written as 

1/(hrA)

• In a restrictive case of convection and radiation boundary 

with the same ambient temperature, the boundary 

resistance shall be 1/((hr+hc)A)



2

Contact Resistance
• When we had put slabs together, the interface is assumed 

to have one temperature

• In reality, the interface is complex and the heat transfer 

mode is complex too

• It can be idealized to be have a contact resistance with a 

finite jump in temperature as shown 
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• This is obtained experimentally and is tabulated in 

handbooks 

• Sometimes the handbooks 

list contact conductance 
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Overall Heat Transfer Coefficient
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• When we have a series of slabs (contact resistance 

neglected)
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• In the heat transfer literature 

overall heat transfer coefficient, 

U, is defined as
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Network Analysis

• Although one 

dimensional analysis is 

very restrictive, 

sometimes it is extended 

to a network

• This methodology is fast 

becoming obsolete due to 

the progress in numerical 

heat transfer

One Dimensional Cylindrical Wall
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• The heat equation in cylindrical coordinate for a 

constant property system can be written as

• In steady state with no heat generation and if the 

system can be assumed such that T varies only along r 

we can write
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This implies that the total heat crossing 

any radial plane in the cylinder is constant
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Electrical Analogy-II
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Computation of Temperature 

• To compute temperature at any radius r within a 

cylindrical wall with To, Ti, Ro and Ri, we proceed 

as follows
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• Now we integrate between Ri and R as follows:
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One dimensional Spherical wall
• The heat equation in spherical coordinate for a 

constant property system can be written as

q
T

sink
sinr

1T
k

sinr

1

r

T
kr

rr

1

t

)T(
c

222

2

2
′′′+









θ∂

∂
θ

θ∂

∂

θ
+








φ∂

∂

φ∂

∂

θ
+








∂

∂

∂

∂
=

∂

∂
ρ

0
r

T
kr

rr

1 2

2
=









∂

∂

∂

∂
⇒ C

r

T
kr2 =

∂

∂
⇒

r
*

r
2

qCqr4 ==′′π⇒
This implies that the total heat crossing 

any radial plane in the sphere is constant
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Electrical Analogy
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Integrating between Ri and Ro, we have
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Thermal resistance

Similarly, temperature at 

any R can be written as
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Conduction with Heat Generation
• We had analyzed one-dimensional cases in slab, 

cylinder and sphere cases without heat generation 

• In nuclear and other applications conduction in 

heat generating body is of important significance 

• The heat generation can be uniform (electrical 

heating) or non-uniform (Radiation shields) 

• The current crossing a plane is no longer a 

constant

• The heat generation affects the temperature 

distribution

1-D Slab with Heat Generation-I
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Boundary Conditions; At x=-L, T=Ts; At x=L, T=Ts
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We shall first restrict to constant 

volumetric heat generation rate

1-D Slab with Heat Generation-II

If k can be taken as constant, then
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1-D Slab with Heat Generation-III
• Now if we add a clad to it we can just modify the 

results in the following manner 

• Now the surface of the clad temperature 

will be the boundary condition for the 

composite geometry 

• Since no heat is generated in the clad, 

the heat rate crossing every plane will be 

constant and we can use the previous 

concepts derived 

• The total heat rate crossing any clad plane is equal 

to heat rate generated in one half of the fuel
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1-D Slab with Heat Generation-IV
• The temperature drop in clad is equal to 
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• The temperature anywhere inside the clad can be 

computed using linear interpolation as temperature 

profile is linear in the clad

• If we neglect the contact resistance, 

then Ts of fuel is same as that of Tci.

• The fuel temperature can be now estimated 

from the equation derived previously
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1-D Slab with Heat Generation-V

• The centerline temperature To can be computed as 
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• We can manipulate the above to get some interesting 

results
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• This method is valid only to get To and valid only 

if kf is constant

1-D Slab with Heat Generation-VI

• If we have clad, contact resistance and fluid 

cooling the fuel, then we can simply write
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• The Temperature profiles can be found in fuel 

once Ts is found, by using
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1-D cylinder with heat addition-I
• The analysis of cylinder is similar 
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1-D cylinder with heat addition-II

If k can be taken as constant, and 

we integrate once more 2
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First Boundary condition implies C1 = 0
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1-D cylinder with heat addition-III
• Now if we add a clad to it we can just modify the 

results in the following manner 

• The total heat rate crossing any clad radial 

plane is 
LRqq 2π′′′=

• The temperature drop in clad is equal to 
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1-D cylinder with heat addition-IV

• If we have clad, contact resistance and fluid 

cooling the fuel, then we can simply write



















π
+

π

′′
+

π









+
π

π′′′=−⇒ ∞
Lk4

1

LR2

R

Lk2

R
R

ln

LR2h

1
LRqTT

fci

contact

c

ci

co

co

2
cio

Note that L, being 

arbitrary cancels out

1-D sphere with heat addition-I
• The analysis of sphere is similar 
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Integration of the above equation leads to
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1-D sphere with heat addition-II

If k can be taken as constant, and 

we integrate once more 2
2 Cr

k6

q
T +

′′′−
=⇒

Second Boundary condition 

implies 2
2

s CR
k6

q
T +

′′′−
=

2
s2 R

k6

q
TCOr

′′′
+=

( ) s
22 TrR

k6

q
T +−

′′′
=⇒

Parabolic distribution

First Boundary condition implies C1 = 0
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