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Extended Heat Transfer-I

x

• Consider a slab fuel with volumetric 

heat generation. If it is cooled by an 

efficient media, then the temperature 

profile is as shown in the dotted line

• If the heat transfer coefficient is poor, 

then the fluid temperature drop will 

be more and the centerline 

temperature will also increase as 

shown by the dark line

• This will lead to unacceptably high 

temperature. One way of reducing 

the temperature would be by  

attaching fins to the outside surface

Extended Heat Transfer-II

• Addition of fins reduce convective resistance by 

increasing A 
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• Heat transfer by addition of surface area is called 

extended heat transfer or fin heat transfer

• Heat transfer in Fin is by both convection and 

conduction

• Though strictly not one dimensional, it can be 

approximated by one dimensional heat transfer

• Since it is a model used for analysis, we shall 

derive the fin equation from basics

Governing equations for Fins-I
• In general, let the fin be of varying cross 

section as shown

dx

dT
kA− x

dx

dT
kA

dx

d

dx

dT
kA ∆








−+−

)TT(xhP ∞−∆

x

• In steady state, heat in should be equal to heat out
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Governing equations for Fins-II

0)TT(hP
dx

dT
kA

dx

d
=−−








∞

• If k of the fin is constant, then,
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• If the fin is prismatic, then, A is independent of x
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• Defining (T-T∞) = θ, and (hP/kA) = m2, we have
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Governing equations for Fins-III

• The governing equation is a second order differential 

equation and its solution can be expressed as
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• The Boundary condition for the above equation is 

usually idealized conditions

• At the base of the fin, the temperature is usually 

specified as Tb
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• The commonly used boundary condition at the tip is 

what is known as insulated tip boundary

Governing equations for Fins-IV

• This is expressed as
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• Boundary condition at x = 0, gives
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• Boundary condition at x = L, gives
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Governing equations for Fins-V
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Fin Heat Transfer -I
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• We Studied the case of Fin with insulated tip and 

obtained the solution as
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4• The parameter mL is non-dimensional 

and decides the character of the fin

• mL=1 is kind of under-designed fin and mL=5 will 

be a over designed fin with material waste, mL=3 is 

considered a good number for fin design

• Let us get more information by obtaining the total 

heat transfered

Fin Heat Transfer -II
• Total heat transferred by the fin is given by
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Fin Heat Transfer -II
• As the boundary conditions are modified, or 

variable area fins are concerned, the subject gets 

more complicated and will be left to specialists

• However, to help non-specialists use complex 

results and interpret them, some simple parameters 

are defined.

• The first one is fin effectiveness εf
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• For the case we have analysed
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• Another measure used is the fin efficiency ηf

Fin Heat Transfer -III
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• The value of ηf is generally dependent on the 

non-dimensional parameter mL and expressions 

are available for complex geometries. 

• The definitions of P and A have to be carefully 

understood. This you can do in the homework
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Fin Heat Transfer -IV

• The real interest in 

engineering is not a 

single fin but a fin array 

such as the ones shown

• Let us now define the following areas

• Auf is the total area that is not finned (unfinned)

• Af is the each fin surface area (perimeter x Length)

• Heat transferred by the fins can be given by
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Fin Heat Transfer -V

• Heat transferred by the unfinned area
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• Total Heat transferred
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• In terms of electrical analogy
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Fin Heat Transfer -VI

• Many times the fins are not metallurgically bonded 

but shrink fitted or bonded with adhesives

• This adds contact resistance

• This can easily be accommodated using electrical 

analogy
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