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Two-Dimensional Heat Transfer-I 

• We Studied one dimensional heat transfer from 

plates, cylinders, spheres, Fins and Fin arrays

• Many real life applications are more complex and 

need 2-d or 3-d analysis.

• Three approaches are available, viz., analytical, 

graphical and numerical

• Analytical solution is exact, while graphical and 

numerical solutions are approximate

• Graphical solutions are obsolete and will not be 

discussed

Two-Dimensional Heat Transfer-II 
• Analytical solution tends to become complex, but 

are used as benchmark solutions to qualify 

approximate numerical methods

• We shall restrict to two-dimensional cases in this 

course
• Complex three dimensional cases are now solved 

mostly with numerical codes

• We shall also restrict to Cartesian case. Complex 

cases can be studied in a course in Partial 

Differential Equations and Boundary Value 

Problems.

Two-Dimensional Heat Transfer-III 
• The governing equation for 2-d steady heat 

transfer in Cartesian equations without heat 

generation is 
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• The methodology that is used is called separation 

of variables

• This methodology is valid for linear equations 

with boundary conditions that can be separated

• Let us illustrate this for one problem
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Heat Transfer in a Plate-I 
• The governing equation

• To non-dimensionalize the temperature, we define
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• Boundary conditions

0 ≤ x ≤ L; 0 ≤ y ≤W;

T(0,y) = T1; T(L,y) = T1; T(x,0) = T1; T(x,W) = T2
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⇒ 0 ≤ x ≤ L; 0 ≤ y ≤W;

θ(0,y) = 0; θ(L,y) = 0; θ(x,0) = 0; θ(x,W) = 1

Heat Transfer in a Plate-II
• The solution for θ(x,y) is assumed of the form:

θ(x,y) = X(x)Y(y)

• Substituting this in the governing equation, we get
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• Since LHS is only a function of x and RHS is only 

a function of y and yet they be equal, would 

require that both sides be equal to a constant
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Heat Transfer in a Plate-III
• The solution for X and Y are;
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• The BC at y =0; θ = 0,  at  y = W; θ = 1

at x = 0; θ = 0,  at x = L; θ = 0 
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We still have to satisfy two more conditions at x = L, y = W

BC at x = L ( ) ( )yy
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Heat Transfer in a Plate-IV
• If either C2 or C4 is zero, then we get the trivial 

solution, which will violate the boundary condition at 

y = W, Hence not possible 
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• We still have to satisfy the boundary condition;

At y = W; θ = 1

Heat Transfer in a Plate-V

• This involves concepts in orthogonal functions 

• If we have several functions f1(x), f2(x), …fn(x), 

They are said to be orthogonal in a domain a ≤ x ≤ b, 
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• It turns out that 
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Heat Transfer in a Plate-VI
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• We shall make use of all these to satisfy the BC at y = W 
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• To make the above true for 0 ≤ x ≤ L, we need to do  

some tricks to find the correct form of Cn. For this, the 

above expression is integrated over the domain to give
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Heat Transfer in a Plate-VII

• Note that in the RHS, only term n=m will survive
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Heat Transfer in a Plate-VIII

• Hence the solution is
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• It may be observed that the solutions require fairly 

complex techniques. These become more complex in 

cylindrical and spherical coordinate systems. Compilation 

of these solutions are available in Hear transfer 

handbooks and a treatise by Carslaw and Jaeger
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Elements of Numerical Method-I 
• Numerical methods employ 

what is known as discrete 

mathematics

• In this method, the domain is 

discretized into discrete points 

and the solutions are found at 

these discrete locations

• The nodal temperatures are expected to be 

representative value for the control volume shown 

in red
• We represent any nodal temperature as T(i,j), 

where i increases along x direction and j increases 

along y direction
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Elements of Numerical Method-II
• If we apply Taylor series, we can write 
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• Subtracting Eqs. (1) and (2) we get
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Elements of Numerical Method-III

• Similarly Eqs. (3) and (4) we get
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• Now adding Eqs (1) and (2) we get
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Elements of Numerical Method-IV

• The governing equation we want to solve is
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• Expressing the derivatives as finite differences 

for any arbitrary point i,j, we get

• In Eqs (5)-(8), we have obtained approximate 

expressions for the derivatives in terms of discrete 

values of temperature in the neighborhood

• These expressions are termed finite difference 

approximations of the derivatives
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Elements of Numerical Method-V

• Eq. (9) is called the finite difference 

form of the Laplace equation in two 

dimensions

• Effectively, we have converted the 

partial differential equation into an 

algebraic equation 

• For simplicity, if we choose ∆x= ∆y, then
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• For the given discretization as shown, we have 25 

points, of which we know the 16 values as boundary 

conditions. Hence only 9 interior values need be found
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Elements of Numerical Method-VI

• We can write a difference equation for each of the 

interior node and get 9 equations

• For the known boundary conditions, the 9 unknowns 

can be found by solving the set of  9 algebraic equations

• There are many techniques to solve these

• We shall illustrate the simplest of all called point 

Gauss-Siedel procedure

• Eq. (10) can be re-written as
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• The unknowns are for i = 2-4 

and j = 2,4

Elements of Numerical Method-VII
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• Assume arbitrary values for 

all unknowns, T(i,j) say T1
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For i = 2, 4
For j = 2, 4

End j
End i

• The algorithm will be

• Repeat till convergence (Tnew – Told)/Tnew < Tolerance



4

Elements of Numerical Method-VIII

• Treatment of heat flux boundary 

condition
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• Treatment of heat transfer boundary 

condition
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• When the boundary conditions are not the temperature 

specified ones, we need to write a finite difference 

equation for the boundary nodes 

Elements of Numerical Method-IX

• Before closure, it is pertinent to point tat to obtain 

accurate solutions the number of nodes need to be 

increased

• Usual practice is to first get a coarse node solution 

with say 10 x 10 nodes. Then the process is repeated 

with 20 x 20 nodes. If the results are not much 

different, then no more refinement is done. Otherwise, 

the number of nodes is further increased till the results 

no longer change

An Example-I
• To illustrate the effectiveness of the numerical 

algorithm, let us take a very special boundary condition  

• From our previous lecture on 

separation of variable, application 

of the 0 temperature boundary 

condition gave the solution as  
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• The boundary condition at top wall (y = 1) gives
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An Example-II
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• Careful observation reveals that with n = 1, C1 = 

1/sinh(π) and all other Cn = 0, will exactly satisfy the 

boundary condition

• Therefore we can write the solution as

)sinh(

)ysinh()xsin(

π

ππ
=θ

• It is very easy to verify that the above satisfies the 

differential equation and the boundary conditions

An Example-III
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• Started with arbitrary values for the 

interior as 0.5

• Performed 24 iterations

• Compared with analytical solution

• Maximum error less than 1.3%, 

when normalized with the 

maximum temperature


