## **Assignment 5**

1. Calculate the fuel utilization and infinite multiplication factor for a fast reactor consisting of a mixture of liquid sodium and plutonium, in which the plutonium is present to 3.0 w/o. The den-

sity of the mixture is approximately 1.0 g/cm<sup>3</sup> ( $\sigma_a^{Pu} = 1.65b$ ,  $\sigma_f^{Pu} = 1.40b$ ,  $\eta = 2.61$ 

 $\sigma_a^{Na} = 0.0008b$ ) [f=0.887, k<sub> $\infty$ </sub> = 2.31]

- 2. A bare cylindrical reactor of height 200 cm and diameter 100 cm is operating steady-state power of 200 MW. If the origin is taken at the centre of the reactor, what is the power density at the point r = 7 cm, z = -22.7 cm? [ 421.1 W/cc, (with the condition that flux vanishes at boundary)]
- 3. In a spherical reactor of radius 45 cm the fission rate density is measured as 2.5 x 10<sup>11</sup> fissions / cm<sup>3</sup> -sec at a point 35 cm from the centre of the reactor. (a) At what steady-state power is the reactor operating? (b) What is the fission rate density at the centre of the reactor?[9.46 X 10<sup>11</sup> fissions/cm<sup>3</sup>-s]
- 4. A bare thermal reactor in the shape of a cube consists of a homogeneous mixture of  $U^{235}$  (for property values refer to next problem) and graphite ( $\sigma_a^C = 0.0008b$ ) The ratio of atom densities of N<sub>Fuel</sub> /N<sub>moderator</sub> = 1.0 x 10<sup>-5</sup>. Using the modified one-group theory, calculate (a) the critical dimensions; (b) the critical mass; (c) the maximum thermal flux when the reactor operates at the power of 1 kW. [3.43 m, 12.6 kg, 6.45 X 10<sup>8</sup> neutrons/cm<sup>2</sup>-s]
- 5. At a fuel reprocessing plant, aqueous solution of Uranyl Sulphate ( $U^{235}O_2SO_4$ ) is to be stored in cylindrical pipes. If the maximum concentration of the Uranyl Sulphate in the solution is expected to be 100 g/litre, what is the maximum size (radius) of the pipe which can be safely used to avoid any accidental criticality. Assume pipe to be an infinite cylinder and use one group approach. You may assume for simplicity that the density of  $UO_2SO_4$  solution is 1g/cc. Additional data: [Ans: R = 15.1 cm]

| Material         | $\sigma_{a}(barns)$ | $\sigma_{f}(barns)$ | ν   | L (cm) |
|------------------|---------------------|---------------------|-----|--------|
| $U^{235}$        | 681                 | 581                 | 2.5 |        |
| H <sub>2</sub> O | 0.664               |                     |     | 2.85   |
| $0^{16}$         | 0.0                 | 0.0                 |     |        |
| S <sup>32</sup>  | 0.0                 | 0.0                 |     |        |

6. A spherical nuclear reactor (fast) of 0.5 m radius, is fuelled with mixed  $Pu^{239}O_2 - U^{235}O_2$  (density = 10.5 g/cc) with weight per cent of PuO<sub>2</sub> being 15%. Further, the reactor has Fe<sup>56</sup> (structural material, 7.9 g/cc) and Na<sup>23</sup> (coolant,0.97 g/cc) such that the volume fractions of fuel, Fe and Na respectively are, 0.3, 0.2 and 0.5. Using the average properties as specified in the table, compute the diffusion length of the reactor system as given by one speed theory.

| [Ans | :L | =0 | .1 | 6. | 5 | n | 1] |  |
|------|----|----|----|----|---|---|----|--|
|      |    | -  |    |    |   |   |    |  |

| Material          | $\sigma_{a}(barns)$ | $\sigma_{f}(barns)$ | ν   |
|-------------------|---------------------|---------------------|-----|
| $U^{235}$         | 0.404               | 0.05                | 2.5 |
| Pu <sup>239</sup> | 2.4                 | 1.95                | 3.0 |
| Na <sup>23</sup>  | 0.0018              |                     |     |
| Fe <sup>56</sup>  | 0.0087              |                     |     |
| 0                 | 0.0                 | 0.0                 |     |

7. The typical unit cell of a Rajasthan Atomic Power Station (RAPS) is shown in the following figure.



The computed volumes of the various materials per unit length of the reactor and Moderator

| $UO_2$                     | $29.2 \text{ cm}^3$      |
|----------------------------|--------------------------|
| Zr (A=91) 20               | $0.3 \text{ cm}^3$       |
| D <sub>2</sub> O (coolant) | $19.1 \text{ cm}^3$      |
| Air gap                    | $27.4 \text{ cm}^3$      |
| D <sub>2</sub> O (moderate | or) $426.6 \text{ cm}^3$ |

It may be assumed that air may be treated as a non-participating medium (does not react with neutrons) and the Uranium in  $UO_2$  is natural.

- (a) Given that the density of  $UO_2$ , Zr and  $D_2O$  to be 10.5, 6.5 and 1.1 g/cc respectively, calculate the number density of each material.
- (b) Given the volumes as above, calculate the macroscopic absorption cross section of UO<sub>2</sub>, Zr and D<sub>2</sub>O, given the following

| Material         | $\sigma_{a}(barns)$   | $\sigma_{f}(barns)$ | v   | L (cm) | $\tau$ (cm <sup>2</sup> ) |
|------------------|-----------------------|---------------------|-----|--------|---------------------------|
| $U^{235}$        | 681                   | 581                 | 2.5 |        |                           |
| $U^{238}$        | 2.7                   | 0.0                 |     |        |                           |
| Zr               | 0.198                 |                     |     |        |                           |
| D <sub>2</sub> O | 4.6 X10 <sup>-4</sup> |                     |     | 100    | 120                       |
| 0                | 0.0                   | 0.0                 |     |        |                           |

(c) Compute fuel utilisation factor, f [Ans: 0.966]

(d) Compute  $k_{\infty}$  [Ans: 1.318]

(e) Assuming L/D for the reactor to be 1, calculate the critical diameter for the reactor. [2.18 m]