Assignment 6

1. A small PWR plant operates at a power of $485 \mathrm{MW}(\mathrm{th})$. The core is approximately 1.9 m in diameter and 2.3 m tall. It consists of 23,142 tubes of thickness 0.5 mm and inner diameter 7.5 mm on a square pitch of 10.5 mm . The tubes are filled with $3.4 \mathrm{w} / \mathrm{o}$ enriched UO_{2}. The core is cooled with water entering at $260^{\circ} \mathrm{C}$ flowing at a rate of $15.4 \times 10^{6} \mathrm{~kg} / \mathrm{hr}$ at 150 bar. Compute the,
(a) average temperature of water leaving the core.
(b) average power density in $\mathrm{kW} /$ litre, and
(c) maximum linear heat rate, surface heat flux and volumetric heat generation rate.
2. Design a $3000 \mathrm{MW}($ (th) bare cylindrical PWR, whose height to diameter ratio is 1 . The fuel to coolant volume ratio is to be maintained equal to 1 in a square lattice. The system pressure and core inlet temperature shall be 175 bars and $285^{\circ} \mathrm{C}$ respectively. If the reactor has to work under the following three thermal constraints, viz., the
(i) maximum power density $=250 \mathrm{~W} / \mathrm{cc}$,
(ii) maximum clad surface heat flux $=125 \mathrm{~W} / \mathrm{cm}^{2}$ and,
(iii) maximum core outlet temperature $=325^{\circ} \mathrm{C}$,

Compute , the
(a) reactor dimensions and volume ,
(b) fuel element diameter and lattice pitch,
(c) number of fuel elements, and
(d) mass flow rate and average coolant velocity.

You may assume: c_{p} of coolant $=6 \mathrm{~kJ} / \mathrm{kg}-\mathrm{K}$ and overall peaking factor $=3.64$
Note: The N square lattices, when properly arranged forms a circular core of diameter D
3. The heat flux at the surface of fuel rod in an experimental reactor varies as shown in the figure. The fuel rods are 1 cm in diameter and 2 m long. Water ($\mathrm{C}=4.5 \mathrm{~kJ} / \mathrm{kg}{ }^{\circ} \mathrm{C}$) enters at $65^{\circ} \mathrm{C}$ and flows at the rate of $160 \mathrm{~kg} / \mathrm{hr}$ per rod. The heat transfer coefficient is $6000 \mathrm{~W} / \mathrm{m}^{2}-\mathrm{C}$. Calculate the temperature of coolant and fuel surface temperature at the middle and the exit of the channel.

4. A reactor is made up channels with fuel rods of 10 mm diameter. The associated coolant flow area is $1.5 \mathrm{~cm}^{2}$. The coolant enters at 10 Mpa at a velocity of $3.6 \mathrm{~m} / \mathrm{s}$ and $250{ }^{\circ} \mathrm{C}$. The exit temperature of the coolant is $295^{\circ} \mathrm{C}$. The axial power profile in the channel may be assumed to vary as,
$\mathrm{q}^{\prime \prime}=\mathrm{q}_{0} \mathrm{e}^{\frac{\pi z}{\mathrm{H}}} \sin \left(\frac{\pi z}{\mathrm{H}}\right)$,
where H represents the height of the core, which is $3.6 \mathrm{~m}, \mathrm{z}=0$ represents the bottom of the core and $\mathrm{q}_{0}^{\prime \prime}$ is a constant. Compute the location of the maximum fuel surface temperature, given the following:
$\rho_{\mathrm{f}}=732.3 \mathrm{~kg} / \mathrm{m}^{3}$,
c_{p} of the coolant $=5.51 \mathrm{~kJ} / \mathrm{kg}-\mathrm{K}$.
Convective heat transfer coefficient $=10 \mathrm{~kW} / \mathrm{m}^{2}-\mathrm{K}$

$$
\int e^{a x} \sin (b x) d x=\frac{e^{a x}}{a^{2}+b^{2}}(a \sin (b x)-b \cos (b x))
$$

5 Consider a vertical fuel rod of 8 mm diameter wetted with a coolant mass flow of $0.5 \mathrm{~kg} / \mathrm{s}$. If the linear heat generation rate is as shown in the figure, and the coolant enters at $267^{\circ} \mathrm{C}$, compute the location at which the coolant will boil. You may assume that the saturated temperature of water at the fluid pressure is $285.8^{\circ} \mathrm{C}, \mathrm{c}_{\mathrm{p}}=5.444 \mathrm{~kJ} / \mathrm{kg}-\mathrm{K}$. If the heat transfer coefficient at that location is $8000 \mathrm{~W} / \mathrm{m}^{2}-\mathrm{K}$, compute the clad surface temperature.

