

Review of Nuclear Physics-I				
Chemical Energy \Rightarrow Rearrangement of Electrons Nuclear Energy \Rightarrow Rearrangement of Nucleons				
Rutherford's Model Protons, Neutrons, Electrons				
	Mass	Charge		
Proton	1.67261X10 ⁻²⁴ g	+1.60219 X10-19Columbs		
Electron	9.10956 X10 ⁻²⁸ g	-1.60219 X10-19Columbs		
Neutron	1.67492 X10 ⁻²⁴ g	0		

Review of Nuclear Physics-II

Z - No of Protons A - No of Protons + No. of Neutrons

Isotope – Same Z, different A

⇒Enormous Hollow space ⇒Large number of neutrons for collisions of occur.

Radius of Nucleus	~	10 ⁻¹⁵ m
Radius of Atom	~	10 ⁻¹⁰ m
Density of Nucleus	~	1017 Kg/m3
Density of Atom	~	103 Kg/m3

Analysis of Decay Chain-II

$$\frac{dN_{A}}{dt} = 0 - \lambda_{A}N_{A} \quad \text{With } N_{A} = N_{A0} \text{ at } t = 0 \quad \Rightarrow N = N_{o}e^{-\lambda t}$$

$$\frac{dN_{B}}{dt} = \lambda_{A}N_{A} - \lambda_{B}N_{B} \quad \Rightarrow \frac{dN_{B}}{dt} + \lambda_{B}N_{B} = \lambda_{A}N_{Ao}e^{-\lambda_{A}t}$$
Using $e^{\lambda_{B}t}$ as the integral factor
$$\frac{dN_{B}}{dt}e^{\lambda_{B}t} + \lambda_{B}N_{B}e^{\lambda_{B}t} = \lambda_{A}N_{Ao}e^{(\lambda_{B} - \lambda_{A})t}$$

$$\Rightarrow d(N_{B}e^{\lambda_{B}t}) = \lambda_{A}N_{Ao}e^{(\lambda_{B} - \lambda_{A})t}dt$$

$$\Rightarrow \left[N_{B}e^{\lambda_{B}t}\right]_{In}^{Fin} = \lambda_{A}N_{Ao}\left[\frac{e^{(\lambda_{B} - \lambda_{A})t}}{(\lambda_{B} - \lambda_{A})}\right]_{0}^{t}$$

Analysis of Decay Chain-III
With
$$N_B = N_{B0}$$
 at $t = 0$
 $\Rightarrow N_B e^{\lambda_B t} - N_{B0} = \frac{\lambda_A N_{A0}}{\lambda_B - \lambda_A} \left(e^{(\lambda_B - \lambda_A)t} - 1 \right)$
or $N_B = N_{B0} e^{-\lambda_B t} + \frac{\lambda_A N_{A0}}{\lambda_B - \lambda_A} \left(e^{-\lambda_A t} - e^{-\lambda_B t} \right)$
Since $N_A + N_B + N_C = N_{A0} + N_{B0} + N_{C0}$, we can estimate N_C

Г

Special Cases -II For $\lambda_B \gg \lambda_A$ $\frac{N_B}{N_A} = \frac{\lambda_A}{\lambda_B} \Rightarrow \lambda_A N_A = \lambda_B N_B$ The above implies that the activities are equal irrespective of the initial activities. This is called Secular equilibrium