
1

ME 704

Computational Methods in Thermal and
Fluids Engineering

(KNI-1 Numerical Differentiation)

Kannan Iyer

Kiyer@iitb.ac.in

Department of Mechanical Engineering

Indian Institute of Technology, Bombay

Numerical Differentiation

Motivation for study

– Obtaining derivative at a point from a table of
functional data

� Obtaining ‘h’ from the measurement of T

� Obtaining ‘f’ from a tabulated ‘v’ data

� Generating methods for solving ODE/PDE

Derivatives from Polynomials

• Numerical derivatives can be obtained from
polynomials and their function values

)0(fs)0(f)x(P1 ∆+=

� First Order

h

xx
swhere 0−

=

dx

ds

ds

df
xPTherefore =

′
)(1

h

1

dx

ds
=∴

h
f

1
)0(∆=

Derivatives from Polynomials (Cont’d)

�Second Order

)0(f
!2

)1s(s
)0(fs)0(f)x(P 2

2 ∆∆
−

++=

h
f

s
fxP

1
)0(

!2

12
)0()(

2
2 








∆

−
+∆=

′
∴

�Higher order approximations can similarly be
obtained.

�Since each term is divided by h the accuracy of
the derivative would be order hn and not hn+1

2

Example: f=1/x

Derivatives from Polynomials (Cont’d)

s = (3.44-3.40)/0.1 = 0.4

f ’(3.44) = -0.008404/0.1 -0.08404

+[{2(0.4)-1}/2] (0.000468)/0.1 -0.084508

-0.084505

+ [{3(0.4)2-6(0.4)+2)}/6]

(0.000040)/0.1
-0.084503

Exact Value

Derivatives from Polynomials (Cont’d)

�Similarly we can obtain derivatives using
backward interpolating polynomial.

�We have shown that they would be
equivalent by choosing proper value of ‘s’.

�We can similarly obtain higher derivatives.

�As pointed earlier, the accuracies will reduce
further due to divisions by higher orders of ‘h’.

�We shall make use of these to derive finite
difference relations later used in ODEs

Numerical Integration

�The function f(x) may be a set of discrete
values as in the case of properties

�It can be a complex function, in which case
the function can be evaluated at some
discrete values and integrated suitably

�We shall derive the procedures using
Newton’s forward interpolating polynomial

�Unlike differentiation, integration is an
accurate process and the order of accuracy
increases.

TRAPEZIODAL RULE (First Order)

)0(fs)0(f)x(P1 ∆+=

hdsdxor

h

xx
swhere 0

=

−
=

hds)s(fdx)x(f

1

0

high

low

∫∫ =

()∫ ∆+=
1

0

)0()0(hdsfsf

() hfffh
f

f 





−+=




 ∆
+=)0()1(

2

1
)0(

2

)0(
)0(

())1()0(
2

ff
h

+=

1

0

2

)0(
2

)0(







∆+= f

s
sfh

3

Trapezoidal Rule (Cont’d)

�As we have used first order polynomial the
error term for polynomial is o (h2)

�Since the integral involves a multiplication
with h, the order increases to h3 locally.

)(f
12

h

hds)(fh
2

)1s(s
TermError

3

1

0

2

ξ

ξ

′′−=

′′
−

= ∫

Trapezoidal Rule (Cont’d)

0 n-121 n

f(s)
Piecewise linear

() ()n1n110

1n

1i

1ii

1n

1i

i ff2...f2f2f
2

h
ff

2

h
II ++++=+== −

−

=
+

−

=

∑∑

∑
−

=

″
−=

1n

0i

i

3

)(f
12

h
Error ξ 








′′







 −
−=








′′−=)(

12
)(

12

3

0

3

ξξ f
h

h

xx
f

h
n n

Globally O(h2)

Simpson’s 1/3 Rule

∫ 







∆

−
+∆+=

2

0

2

2

)0(
2

)(
)0()0(hdsf

ss
fsf

hf
ssfs

sf

2

0

2
232

)0(
462

)0(
)0(








∆







−+

∆
+=

hffffff 





+−+−+=))0()1(2)2((

3

1
))0()1((2)0(2

[])2()1(4)0(
3

fff
h

++=

Simpson’s 1/3 Rule

0 n-121 n

f(s)
Piecewise quadratic

()

()n1n2n3210

2i1iii

ff4f2...f4f2f4f
12

h

ff4f
3

h
II

++++++=

++==

−−

++∑∑

4

Simpson’s 1/3 Rule

)(
90

1

)(
24

)3)(2)(1(

0)(
6

)2)(1(

5

2

0

4

2

0

3

ξ

ξ

ξ

fh

hdsfh
ssss

hdsfh
sss

TermError

′′′′−=

′′′′
−−−

=

=′′′
−−

=

∫

∫

)(f
90

h

h2

)xx(
)(f

90

h
ErrorGlobal

iv

i

5

0niv

i

5

ξξ
−

−=−=∑

Globally O(h4)

Simpson’s 3/8 Rule

�Simpson’s 1/3 rule can be applied if only odd
number of data points are available

�To integrate when even number of points are
available, the first 4 points can be integrated
by Simpson’s 3/8 rule and the remaining by
Simpson’s 1/3 rule.

()3210 ff3f3f
8

h3
I +++=

)(f
80

h3
ErrorLocal

iv

i

5

ξ−=

Globally O(h4)

Deferred Approach to the Limit

�Richardson’s Extrapolation, also called ‘Deferred
Approach to the Limit’ is a method to improve
the accuracy of lower order methods.

�In the domain of integration this method is
called Romberg Integration

�It can be shown that in using trapezoidal
integration, the truncation errors can be
written as C1 h2 + C2 h4 + C3 h6 + …

Romberg Integration-I

�If the integration procedure is carried out for
intervals h and 2h, we can write

I = I(h) + C1 h2 + C2 h
4 + …, (1)

I = I(2h) + C1 (2h)2 + C2 (2h)
4 + …, (2)

Multiplying Eq. (1) by 4 and subtracting
Eq.(2) and then dividing by 3, we get

I = [4I(h) – I(2h)]/3 + O(h)4

This can be rewritten as

I = I(h) + [I(h) – I(2h)]/3 + O(h)4

�Thus we have a higher order solution from
lower order solutions. This is called the
Richardson extrapolation

5

Romberg Integration-II

�The above can be generalized by assuming a
power law form

I = I(h) + C1 hn + C2 hm …, (1)

I = I(2h) + C1 (2h)n + C2 (2h)m …, (2)

Multiplying Eq. (1) by 2n and subtracting
Eq.(2) and then dividing by 2n-1 we get

I = [2nI(h) – I(2h)]/(2n-1)+ O(h)m

This can be rewritten as

I = I(h) + [I(h) – I(2h)]/(2n-1)+ O(h)m

Romberg Integration-III

� Thus, by using trapezoidal rule repeatedly, the
accuracy can be further improved by computing
with say h/2 and eliminating the next constant in
the previous slide.

� In general, the correction formula is

Improved Value = More accurate value

+ [More accurate value – Less accurate value]

2n-1
� Such a recursive algorithm is called Romberg

Integration Procedure

Romberg Integration-IV

Level Steps Trapez

O(h2)

Richard

O(h4)

Richard

O(h6)

Richard

O(h8)

1 1 (20) I1,1

2 2 (21) I2,1 I2,2

3 4(22) I3,1 I3,2 I3,3

4 8(23) I4,1 I4,2 I4,3 I4,4

Romberg Integration-V

I=1

aint(I,I)=(ahigh-alow)*(f(alow)+f(ahigh))/2.

error=2.*errmax | Just to make algorithm proceed

do while(I.lt.nromax.and.dabs(error).gt.errmax)

I=I+1

nsteps=2**(I-1)

aint(I,1)=trapez(alow,ahigh,nsteps)

Do j = 2,I

aint(I,j)=aint(i,j-1)+(aint(i,j-1)-aint(i-1,j-1))

1 /(2**(2*(j-1))-1)

enddo

best=aint(I,I)

error=abs((best-aint(I,I-1))/best)

enddo

stop

end

