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Numerical Differentiation

Motivation for study

– Obtaining derivative at a point from a table of 
functional data

� Obtaining ‘h’ from the measurement of T

� Obtaining ‘f’ from a tabulated ‘v’ data 

� Generating methods for solving ODE/PDE

Derivatives from Polynomials

• Numerical derivatives can be obtained from 
polynomials and their function values
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Derivatives from Polynomials (Cont’d)

�Second Order
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�Higher order approximations can similarly be 
obtained.

�Since each term is divided by h the accuracy of 
the derivative would be order hn and not hn+1
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Example: f=1/x

Derivatives from Polynomials (Cont’d)

s = (3.44-3.40)/0.1 = 0.4

f ’(3.44) =  -0.008404/0.1 -0.08404

+[{2(0.4)-1}/2] (0.000468)/0.1 -0.084508

-0.084505

+ [{3(0.4)2-6(0.4)+2)}/6]

(0.000040)/0.1
-0.084503

Exact Value

Derivatives from Polynomials (Cont’d)

�Similarly we can obtain derivatives using 
backward interpolating polynomial.

�We have shown that they would be 
equivalent by choosing proper value of ‘s’.

�We can similarly obtain higher derivatives.

�As pointed earlier, the accuracies will reduce 
further due to divisions by higher orders of ‘h’.

�We shall make use of these to derive finite 
difference relations later used in ODEs

Numerical Integration

�The function f(x) may be a set of discrete 
values as in the case of properties

�It can be a complex function, in which case 
the function can be evaluated at some 
discrete values and integrated suitably

�We shall derive the procedures using 
Newton’s forward interpolating polynomial

�Unlike differentiation, integration is an 
accurate process and the order of accuracy 
increases.

TRAPEZIODAL RULE (First Order)
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Trapezoidal Rule (Cont’d)

�As we have used first order polynomial the 
error term for polynomial is o (h2)

�Since the integral involves a multiplication 
with h, the order increases to h3 locally.
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Trapezoidal Rule (Cont’d)
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f(s)
Piecewise linear
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Globally  O(h2)

Simpson’s 1/3 Rule
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Simpson’s 1/3 Rule

0 n-121 n

f(s)
Piecewise quadratic
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Simpson’s 1/3 Rule
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Globally O(h4)

Simpson’s 3/8 Rule

�Simpson’s 1/3 rule can be applied if only odd 
number of data points are available

�To integrate when even number of points are 
available, the first 4 points can be integrated 
by Simpson’s 3/8 rule and the remaining by 
Simpson’s 1/3 rule.
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Globally O(h4)

Deferred Approach to the Limit

�Richardson’s Extrapolation, also called ‘Deferred 
Approach to the Limit’ is a method to improve 
the accuracy of lower order methods.

�In the domain of integration this method is 
called Romberg Integration

�It can be shown that in using trapezoidal 
integration, the truncation errors can be 
written as C1 h2 + C2 h4 + C3 h6 + …

Romberg Integration-I

�If the integration procedure is carried out for 
intervals h and 2h, we can write

I = I(h) + C1 h2 + C2 h
4 + …, (1)

I = I(2h) + C1 (2h)2 + C2 (2h)
4 + …, (2)

Multiplying Eq. (1) by 4 and subtracting 
Eq.(2) and then dividing by 3, we get

I = [4I(h) – I(2h)]/3 + O(h)4

This can be rewritten as

I = I(h) + [I(h) – I(2h)]/3 + O(h)4

�Thus we have a higher order solution from 
lower order solutions. This is called the 
Richardson extrapolation
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Romberg Integration-II

�The above can be generalized by assuming a 
power law form

I = I(h) + C1 hn + C2 hm …, (1)

I = I(2h) + C1 (2h)n + C2 (2h)m …, (2)

Multiplying Eq. (1) by 2n and subtracting 
Eq.(2) and then dividing by 2n-1 we get

I = [2nI(h) – I(2h)]/(2n-1)+ O(h)m

This can be rewritten as

I = I(h) + [I(h) – I(2h)]/(2n-1)+ O(h)m

Romberg Integration-III

� Thus, by using trapezoidal rule repeatedly, the 
accuracy can be further improved by computing 
with say h/2 and eliminating the next constant in 
the previous slide.

� In general, the correction formula is

Improved Value = More accurate value 

+ [More accurate value – Less accurate value]                        
____________________________________

2n-1
� Such a recursive algorithm is called Romberg 

Integration Procedure

Romberg Integration-IV

Level Steps Trapez

O(h2)

Richard

O(h4)

Richard

O(h6)

Richard

O(h8)

1 1 (20) I1,1

2 2 (21) I2,1 I2,2

3 4(22) I3,1 I3,2 I3,3

4 8(23) I4,1 I4,2 I4,3 I4,4

Romberg Integration-V

I=1

aint(I,I)=(ahigh-alow)*(f(alow)+f(ahigh))/2.

error=2.*errmax | Just to make algorithm proceed

do while(I.lt.nromax.and.dabs(error).gt.errmax)

I=I+1

nsteps=2**(I-1)

aint(I,1)=trapez(alow,ahigh,nsteps)

Do j = 2,I

aint(I,j)=aint(i,j-1)+(aint(i,j-1)-aint(i-1,j-1))

1                    /(2**(2*(j-1))-1)

enddo

best=aint(I,I)

error=abs((best-aint(I,I-1))/best)

enddo

stop

end


