ME 704
 Computational Methods in Thermal and
 Fluids Engineering
 (KNI-1 Numerical Differentiation)

Indian Institute of Technology, Bombay

Numerical Differentiation

Motivation for study

- Obtaining derivative at a point from a table of functional data
\square Obtaining ' h ' from the measurement of T \square Obtaining ' f ' from a tabulated ' v ' data
\square Generating methods for solving ODE/PDE
路

Derivatives from Polynomials

- Numerical derivatives can be obtained from polynomials and their function values

$$
\begin{gathered}
\square \text { First Order } \\
\qquad \begin{array}{ll}
P_{l}(x)=f(0)+s \Delta f(0) & \text { where } \\
s=\frac{x-x_{0}}{h} \\
\text { Therefore } P_{1}^{\prime}(x)=\frac{d f}{d s} \frac{d s}{d x}=\Delta f(0) \frac{1}{h} & \therefore \frac{d s}{d x}=\frac{1}{h}
\end{array}
\end{gathered}
$$

Derivatives from Polynomials (Cont'd

aSecond Order

$$
\begin{aligned}
P_{2}(x) & =f(0)+s \Delta f(0)+\frac{s(s-1)}{2!} \Delta^{2} f(0) \\
\therefore & P_{2}^{\prime}(x)
\end{aligned}=\left[\Delta f(0)+\frac{2 s-1}{2!} \Delta^{2} f(0)\right] \frac{1}{h}, ~ l
$$

-Higher order approximations can similarly be obtained.
\square Since each term is divided by h the accuracy of the derivative would be order h^{n} and not $\mathrm{h}^{\mathrm{n}+1}$

Derivatives from Polynomials (Cont'd)

\square Similarly we can obtain derivatives using backward interpolating polynomial.
-We have shown that they would be equivalent by choosing proper value of 's'.
-We shall make use of these to derive finite difference relations later used in ODEs
aWe can similarly obtain higher derivatives.
\square As pointed earlier, the accuracies will reduce further due to divisions by higher orders of ' h '.

Numerical Integration

-The function $f(x)$ may be a set of discrete values as in the case of properties
-It can be a complex function, in which case the function can be evaluated at some discrete values and integrated suitably
\square We shall derive the procedures using Newton's forward interpolating polynomial
-Unlike differentiation, integration is an accurate process and the order of accuracy increases.

TRAPEZIODAL RULE (First Order)

$$
\begin{array}{ll}
P_{l}(x)=f(0)+s \Delta f(0) & \text { where } s=\frac{x-x_{0}}{h} \\
\int_{\text {low }}^{\text {high }} f(x) d x=\int_{0}^{l} f(s) h d s & \text { or } \quad d x=h d s \\
=\int_{0}^{1}(f(0)+s \Delta f(0)) h d s=h\left[f(0) s+\frac{s^{2}}{2} \Delta f(0)\right]_{0}^{1} \\
=\left[f(0)+\frac{\Delta f(0)}{2}\right] h=\left[f(0)+\frac{1}{2}(f(1)-f(0))\right] h \\
= & \frac{h}{2}(f(0)+f(1))
\end{array}
$$

Trapezoidal Rule (Cont'd)

\square As we have used first order polynomial the error term for polynomial is o ($\mathrm{h}^{2)}$
\square Since the integral involves a multiplication with h, the order increases to h^{3} locally.

Error Term $=\int_{0}^{1} \frac{s(s-1)}{2} h^{2} f^{\prime \prime}(\xi) h d s$

$$
=-\frac{h^{3}}{12} f^{\prime \prime}(\xi)
$$

Trapezoidal Rule (Cont'd)

$$
\begin{aligned}
& \mathrm{f}(\mathrm{~s}) \\
& I=\sum_{i=1}^{n-1} I_{i}=\sum_{i=1}^{n-1} \frac{h}{2}\left(f_{i}+f_{i+1}\right)=\frac{h}{2}\left(f_{0}+2 f_{l}+2 f_{l}+\ldots 2 f_{n-1}+f_{n}\right) \\
& \text { Error }=\sum_{i=0}^{n-1}-\frac{h^{3}}{12} f_{i}^{\prime \prime}(\xi)=-n\left(\frac{h^{3}}{12} f^{\prime \prime}(\xi)\right)=-\left(\frac{x_{n}-x_{0}}{h}\right)\left(\frac{h^{3}}{12} f^{\prime \prime}(\xi)\right)
\end{aligned}
$$

Simpson's 1/3 Rule

$=\int_{0}^{2}\left(f(0)+s \Delta f(0)+\frac{\left(s^{2}-s\right)}{2} \Delta^{2} f(0)\right) h d s$
$=\left[s f(0)+\frac{s^{2} \Delta f(0)}{2}+\left(\frac{s^{3}}{6}-\frac{s^{2}}{4}\right) \Delta^{2} f(0)\right]_{0}^{2} h$
$=\left[2 f(0)+2(f(1)-f(0))+\frac{1}{3}(f(2)-2 f(1)+f(0))\right] h$
$=\frac{h}{3}[f(0)+4 f(1)+f(2)]$

Simpson's 1/3 Rule

$$
\begin{aligned}
& \text { f(s) } \\
& I=\sum I_{i}=\sum \frac{h}{3}\left(f_{i}+4 f_{i+1}+f_{i+2}\right) \\
& =\frac{h}{12}\left(f_{0}+4 f_{1}+2 f_{2}+4 f_{3} \ldots+2 f_{n-2}+4 f_{n-1}+f_{n}\right)
\end{aligned}
$$

Simpson's 1/3 Rule

$$
\begin{aligned}
\text { Error Term } & =\int_{0}^{2} \frac{s(s-1)(s-2)}{6} h^{3} f^{\prime \prime \prime}(\xi) h d s=0 \\
& =\int_{0}^{2} \frac{s(s-1)(s-2)(s-3)}{24} h^{4} f^{\prime \prime \prime \prime}(\xi) h d s \\
& =-\frac{1}{90} h^{5} f^{\prime \prime \prime \prime}(\xi)
\end{aligned}
$$

Global Error $=\sum-\frac{h^{5}}{90} f_{i}^{i v}(\xi)=-\frac{\left(x_{n}-x_{0}\right)}{2 h} \frac{h^{5}}{90} f_{i}^{i v}(\xi)$

Simpson's 3/8 Rule

-Simpson's $1 / 3$ rule can be applied if only odd number of data points are available
aTo integrate when even number of points are available, the first 4 points can be integrated by Simpson's $3 / 8$ rule and the remaining by Simpson's $1 / 3$ rule.

$$
\begin{gathered}
\quad I=\frac{3 h}{8}\left(f_{0}+3 f_{1}+3 f_{2}+f_{3}\right) \\
\text { Local Error }=-\frac{3 h^{5}}{80} f_{i}^{i v}(\xi)
\end{gathered}
$$

Deferred Approach to the Limit

-Richardson's Extrapolation, also called 'Deferred Approach to the Limit' is a method to improve the accuracy of lower order methods.
\square In the domain of integration this method is called Romberg Integration
aIt can be shown that in using trapezoidal integration, the truncation errors can be written as $C_{1} h^{2}+C_{2} h^{4}+C_{3} h^{6}+\ldots$

Romberg Integration-I

-If the integration procedure is carried out for intervals h and $2 h$, we can write

$$
\begin{equation*}
I=I(h)+C_{1} h^{2}+C_{2} h^{4}+\ldots \tag{1}
\end{equation*}
$$

$$
\mathrm{I}=\mathrm{I}(2 \mathrm{~h})+\mathrm{C}_{1}(2 \mathrm{~h})^{2}+\mathrm{C}_{2}(2 \mathrm{~h})^{4}+\ldots
$$

Multiplying Eq. (1) by 4 and subtracting Eq.(2) and then dividing by 3 , we get
$\mathrm{I}=[4 \mathrm{I}(\mathrm{h})-\mathrm{I}(2 \mathrm{~h})] / 3+\mathrm{O}(\mathrm{h})^{4}$
This can be rewritten as
$\mathrm{I}=\mathrm{I}(\mathrm{h})+[\mathrm{I}(\mathrm{h})-\mathrm{I}(2 \mathrm{~h})] / 3+\mathrm{O}(\mathrm{h})^{4}$
aThus we have a higher order solution from lower order solutions. This is called the Richardson extrapolation

Romberg Integration-II

-The above can be generalized by assuming a power law form
$I=I(h)+C_{1} h^{n}+C_{2} h^{m} \ldots$,
$I=I(2 h)+C_{1}(2 h)^{n}+C_{2}(2 h)^{m} \ldots$,
Multiplying Eq. (1) by 2^{n} and subtracting Eq.(2) and then dividing by $2^{\mathrm{n}}-1$ we get
$I=\left[2^{n} I(h)-I(2 h)\right] /\left(2^{n-1}\right)+O(h)^{m}$
This can be rewritten as
$\mathrm{I}=\mathrm{I}(\mathrm{h})+[\mathrm{I}(\mathrm{h})-\mathrm{I}(2 \mathrm{~h})] /\left(2^{\mathrm{n}}-1\right)+\mathrm{O}(\mathrm{h})^{\mathrm{m}}$

Romberg Integration-III

Thus, by using trapezoidal rule repeatedly, the accuracy can be further improved by computing with say $\mathrm{h} / 2$ and eliminating the next constant in the previous slide.
In general, the correction formula is Improved Value = More accurate value + [More accurate value - Less accurate value] $2^{\text {n }}-1$

- Such a recursive algorithm is called Romberg Integration Procedure

Romberg Integration-IV

Romberg Integration-V

l=1
aint $(1, \mathrm{l})=(\text { ahigh-alow })^{*}(f($ alow $)+f($ ahigh $) / 2$. error=2.*errmax | Just to make algorithm proceed
do while(I.It.nromax.and.dabs(error).gt.errmax) $\mathrm{I}=\mathrm{I}+1$
nsteps $=2^{* *}(l-1)$
aint(l,1)=trapez(alow,ahigh,nsteps)
Do j = 2,I
aint $(1, j)=a i n t(i, j-1)+(a i n t(i, j-1)-a i n t(i-1, j-1))$
1 $/\left(2^{* *}\left(2^{*}(\mathrm{j}-1)\right)-1\right)$

enddo

best=aint(1,1)
error=abs((best-aint(l,I-1))/best)
enddo
stop
end

