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Motivation

� Many of the physical laws leads to the 
development differential equations
� Newton’s Second Law : The acceleration produced is 

equal to Force/unit mass d2x/dt2 = F/m

� First law of thermodynamics : The rate of change 
Energy of a system is equal to difference of the rate 
of heat and work transferred from the system   
mcvdT/dt = -h A (T-Tamb)
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Some of the well known ODE’s
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� Dynamics
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� Radioactivity

� Conduction
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Classification of ODEs

�Order
First Order

Second Order
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�Linearity

y’+y = 0

y’+y2 = 0

Linear

Non-linear
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Classification of ODEs (cont’d)

Homogenity

y’ + y = 0 Homogeneous

Non-Homogeneousy’ + y = f(x)

�Analytical Solutions can be found for linear ODE’s

�For most non-linear systems, numerical solution 
has to be resorted to

System of linear ODE’s

y’ = f(x,y,z) ; z’ = g(x,y,z) 
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Classification of ODEs (cont’d)

Initial Value Problems (IVP)

The boundary conditions are specified at  

the same boundary
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Classification of ODEs (cont’d)

Boundary Value Problems (BVP)

The boundary conditions are specified at  

different boundaries
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�The techniques for solution vary, though in 
principle, both problems can be solved by any one 
of the techniques
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Solution of IVP for a first order ODE

• y' = f(x,y), with y(x=0) = y0

�Taylor Series Method
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Taylor Series Method (Cont’d)

�The method needs evaluation of derivatives

�Automation is cumbersome

�Estimation of error is difficult, if not 
impossible

�Not a preferred method
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Euler’s Method

This is the simplest method, wherein only the first 
two terms of the Taylor series is accounted for.
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Euler’s Method (Cont’d)

When applied repetitively, it leads to
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Error term 
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Stability of Euler’s Method

The exact valuennnNN Tyxhfyy ++=+ ),(
1
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�Stability implies that the round off error 
should not explode

�This implies that the error be bounded, that is 
to say eN+1/ eN < 1

Note that the truncation error has been removed

Numerical Estimate),(
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Stability (cont’d)
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In the limit h tending to zero

The conditions for stability can be derived as
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Stability (cont’d)

The previous condition leads to
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Modified Euler’s Method-I
�Higher order approximations can similarly be 

obtained.
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�Thus yn+1 has to be estimated

�This is done by Euler’s Method
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Modified Euler’s Method-II
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� The overall method consists of the following 
two steps
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�The method is globally second order method

Modified Euler’s Method(Cont’d)

�Acceptable for some problems

�Not a preferred method

�Note that the slope used is the average 
estimated from point n and n+1

�This may be viewed as the slope computed as 
a weighted mean, with sum of the weights 
equal to one

�It is a predictor-corrector method

�It requires two function evaluation per step
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