ME 704

Computational Methods in Thermal and
Fluids Engineering

(Ordinary Differential Equations-I)
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Motivation

O Many of the physical laws leads to the

development differential equations

O Newton’s Second Law : The acceleration produced is
equal to Force/unit mass d2x/dt2 = F/m

d First law of thermodynamics : The rate of change
Energy of a system is equal to difference of the rate
of heat and work transferred from the system
mc,dT/dt = -h A (T-T,)
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Some of the well known ODE’s

4 Dynamics
d’x  dx
+c—+kx=f(t
dr’  dt f(t)
Q Radioactivity
aN _
dt
Q Conduction
d’T _ q"

dx? k

m
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Classification of ODEs
O Order
d_N — N First Order
dt
2
m? ;C_wﬂ_,.kx: f(r) Second Order
t
ULinearity
y’+y - 0 Linear
y+y2=0 Non-linear
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Classification of ODEs (cont’d)

Homogenity
y+y=0 Homogeneous
y +y=f(x) Non-Homogeneous
System of linear ODE's
y =f(xy,2) ; Z = 9(x,y,2)
O Analytical Solutions can be found for linear ODE’s

QFor most non-linear systems, numerical solution
has to be resorted to
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Classification of ODEs (cont'd)

Initial Value Problems (IVP)

The boundary conditions are specified at
the same boundary

d’x dx
—+c—+kx=f(t
mdt2 Cdt J(t)

with x(t=0)=x, and %(1:0):)%0

A

Classification of ODEs (cont’d)

Boundary Value Problems (BVP)

The boundary conditions are specified at
different boundaries

d’T q”

ok
with T(x=0)=T, and T(x=L)=T,
O The techniques for solution vary, though in

principle, both problems can be solved by any one
of the techniques
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Solution of IVP for a first order ODE
« y'=1(x,y), with y(x=0) = y,
O Taylor Series Method
(X, +h)=Y(x) )+ Y (x) )+ Y%, )2 +...
+ V(X )+ Y E )L
?( Xy ) =Y
y,(xo):f(xo:yo)

oy =Y _ o dy
Y _(y)_dx_8x+8ydx
:>y’(x0)=fx(x0,§0)+fy(x0,§0)f(xo,yo)




917

Taylor Series Method (Cont’d)

QO The method needs evaluation of derivatives
O Automation is cumbersome

O Estimation of error is difficult, if not
impossible

ONot a preferred method
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Euler's Method

This is the simplest method, wherein only the first
two terms of the Taylor series is accounted for.

F(xy+h)=3(x, )+ V(x, )+ (&)

yn+] yn +hf;1 +0(h2)
yn+] yn + hf;l

Exact

Numerical

Note that

—7

Yusr = Y
Xo X1 Xo X, Xps1 yn:”T"‘O(h)
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Euler’s Method (Cont'd)
When applied repetitively, it leads to

y0+zyn ynl+zy (§ 27 Where N:M

n=I n=I h
Error term

Z)’”(‘f)%j =Ny"(§)g%= Ay xo ,,(é_,)

n=1

N
= Iv=Yt Z Y, — Y, to(h) | Globally First Order
n=1 method
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Stability of Euler's Method

Q Stability implies that the round off error
should not explode

QThis implies that the error be bounded, that is
tosay ey,i/ ey< 1

Yy =Yy +Hf(x,,3)+T, The exact value

Yvu =Yy T (x,,,) Numerical Estimate
:yN‘FI yN+1 yN yN+h(f(xn’yn)_f(xn’yn))-i_]:l
+h(f(xn’yn) f(xn’yn))

Yy~ Yy
Note that the truncation error has been removed

(Yy—Yn)

€y =€y
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Stability (cont’d)

In the limit h tending to zero

€y =€y +h(aiJ ey
dy ),

Enn _ I
= ., _[Hh[aYlJ

The conditions for stability can be derived as
Enetl g 4 h(aij
eN ay N

<1
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Stability (cont’d)

The previous condition leads to

—1S1+h(aiJ <1
),

1+h(a—fJ <1 :>a—fSO
), dy

afj 2 of
—1<L14+h =— | =>h<— (note=—<0)
(ay N of dy

BN
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Modified Euler’s Method-I

U Higher order approximations can similarly be
obtained. ]
Vs = Yy A V4V, 5+ O(R)
y’:’: Yus1 =V +O(]’l)
%)
= Yyt = T, T+ 22l O
2 h
= ylﬁ-] = yn +% (ylﬁ—] * yll)+0(h3)

yn+1 = f( x’y)n+1

QThus vy, ., has to be estimated
QThis is done by Euler’s Method
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Modified Euler’s Method-lI|

O The overall method consists of the following
two steps

Y=y +hf(x,,y,)

(F(x0 3, )+ f(2,,37)
2

ycn+]=yn+h
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Modified Euler’s Method(Cont'd)

Qlt is a predictor-corrector method
Q1It requires two function evaluation per step
QThe method is globally second order method

O Acceptable for some problems
ONot a preferred method

O Note that the slope used is the average
estimated from point n and n+1

QThis may be viewed as the slope computed as
a weighted mean, with sum of the weights
equal to one




