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Runge-Kutta Methods

�From two function evaluations, we can go to 
several functional evaluation methods which 
improve accuracy.

Note that ki
s are the slopes or f(xi,yi) evaluated 

at several is

�The values of (xi,yi) are chosen appropriately

1with,khyy
r

1i

i

r

1i

iin1n =+= ∑∑
==

+ γγ

2/16

Runge-Kutta Methods (cont’d)

�In general
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� The coefficients γβα and, are obtained 

using Taylor Series
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Runge-Kutta Fourth Order Method
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� A large variety of methods upto sixth order global 
accuracy are available (Refer Numerical Solution of 
ODE by M.K. Jain, Wiley Eastern, 1987)
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Multi-step Methods

• Till now we have marched one-step at a time 
which involves typically n functional evaluations 
for the nth order method

� The question is whether we can have the 
same order of accuracy using fewer functional 
evaluations?

� Multi-step methods precisely accomplish this
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Adams Method

n-3 n-2 n-1 n n+1

Integration

Backward P3 (x)
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Adams Method (Cont’d)
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Adams Method (Cont’d)

x f

xo f0 -- -- --

x1 f1 (f1-f0) -- --

x2 f2 (f2-f1) (f2-2f1+f0) --

x3 f3 (f3-f2) (f3-2f2+f1) (f3-3f2+3f1-f0)
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Adams-Moulton Method 

n-3 n-2 n-1 n n+1

Integration

Backward P3 (x)

n-3 n-2 n-1 n n+1

Integration

Backward P3 (x)

Predictor

Corrector
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Adams-Moulton Method (Cont’d)

Predictor
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A-M with Error Correction
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Milne’s Method 

n-3 n-2 n-1 n n+1

Integration

Backward P2 (x)

n-3 n-2 n-1 n n+1

Integration

Backward P2 (x)

Predictor

Corrector
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Milne’s Method (Cont’d) 
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General Comments

�Milne’s method had simple coefficients, but 
has stability issues

�Adam’s Moulton is the most preferred among 
multi-step methods

�Error estimated with the method can be used 
to correct and mop the error

�However, explicit methods like R-K methods 
can be used to adapt and control errors

�Multi-step methods are efficient as they can 
give higher order accuracy with just one 
function evaluation
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Method for Error Control

�We have seen earlier that for stability of the 
algorithms, step size has to be controlled

�Establishing stability limits for higher order 
methods is laborious. 

�These have been done, but rarely are they 
applied as many times the accuracy overrides 
stability 

�Usually error control is established by choosing 
adaptive methods which chooses h automatically.

�R-K methods are most suited for adaptive 
algorithms as these are one-step methods 
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Error Control (Cont’d)

�If the magnitude of tolerable error is known, 
then the step size can be reduced till the 
estimated error is smaller than the acceptable 
error.

�If during later part of the computation, the 
error is too small, then the step size can be 
doubled. 

�We shall look at these in the next lecture

�We shall also look at the methods for higher 
order ODEs.
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