

Runge-Kutta Methods From two function evaluations, we can go to several functional evaluation methods which improve accuracy. $y_{n+1} = y_n + h \sum_{i=1}^r \gamma_i k_i, \quad with \quad \sum_{i=1}^r \gamma_i = 1$ Note that k_i^s are the slopes or $f(x_i, y_i)$ evaluated at several is The values of (x_i, y_i) are chosen appropriately

2/16

^{3/16} Runge-Kutta Methods (cont'd) □In general $k_{I} = f(x_{n}, y_{n})$ $k_{i} = f\left((x_{n} + h\alpha_{i}), (y_{n} + h\sum_{j=1}^{i-1}\beta_{i,j}k_{j-1})\right)$ $y_{n+I} = y_{n} + h\sum_{i=1}^{r}\gamma_{i}k_{i}, \text{ with } \sum_{i=1}^{r}\gamma_{i} = 1$ • The coefficients α, β and γ are obtained using Taylor Series

4/16								
Runge-Kutta Fourth Order Method								
$lpha_i = rac{1}{2} rac{1}{2} rac{1}{2} rac{1}{2}$	$\begin{vmatrix} \frac{1}{2} \\ 0 \\ 0 \end{vmatrix}$	$egin{array}{c} eta_{i,j} \ rac{1}{2} \ 0 \end{array}$	1	$k_{1} = f(x_{n}, y_{n})$ $k_{2} = f(x_{n} + 0.5h, y_{n} + h(0.5k_{1}))$ $k_{3} = f(x_{n} + 0.5h, y_{n} + h(0.5k_{2}))$ $k_{4} = f(x_{n} + h, y_{n} + hk_{3})$				
$\gamma_i \frac{1}{6}$	$\frac{2}{6}$	$\frac{2}{6}$	$\frac{1}{6}$	$y^{n+1} = y^n + h/6(k_1 + 2k_2 + 2k_3 + k_4)$				
 A large variety of methods upto sixth order global accuracy are available (Refer Numerical Solution of ODE by M.K. Jain, Wiley Eastern, 1987) 								

7/16	
Adams Method (Cont'd)	
$P_{3}(x) = f(x_{n}) + s\nabla f(x_{n}) + \frac{(s)(s+1)}{2!} \nabla^{2} f(x_{n})$	
$+\frac{(s)(s+1)(s+2)}{3!}\nabla^{3}f(x_{n})+sC4h^{4}f^{W}(\xi)$	
$y_{n+1} - y_n = \int_0^1 h \left(f(x_n) + s \nabla f(x_n) + \frac{(s)(s+1)}{2!} \nabla^2 f(x_n) + \frac{(s)(s+1)(s+2)}{3!} \nabla^3 f(x_n) + sC4h^4 f^{IV}(\xi) \right)^{-1} d\xi$	ds

8/16 Adams Method (Cont'd)								
х	f	∇f	$ abla^2 f$	$\nabla^3 f$				
x _o	f ₀							
х ₁	f ₁	$(f_1 - f_0)$						
х ₂	f ₂	(f ₂ -f ₁)	$(f_2 - 2f_1 + f_0)$					
x ₃	f ₃	(f ₃ -f ₂)	$(f_3 - 2f_2 + f_1)$	$(f_3-3f_2+3f_1-f_0)$				
$y_{n+1} = y_n + \frac{h}{24} (55f_n - 59f_{n-1} + 37f_{n-2} - 9f_{n-3}) + \frac{251}{720} h^5 y^V(\xi)$								

15/16

Method for Error Control

- □ We have seen earlier that for stability of the algorithms, step size has to be controlled
- Establishing stability limits for higher order methods is laborious.
- These have been done, but rarely are they applied as many times the accuracy overrides stability
- Usually error control is established by choosing adaptive methods which chooses h automatically.
- □ R-K methods are most suited for adaptive algorithms as these are one-step methods

16/16

Error Control (Cont'd)

- □ If the magnitude of tolerable error is known, then the step size can be reduced till the estimated error is smaller than the acceptable error.
- □ If during later part of the computation, the error is too small, then the step size can be doubled.
- □ We shall look at these in the next lecture
- □ We shall also look at the methods for higher order ODEs.