e ME 704

Computational Methods in Thermal and
Fluids Engineering

(Ordinary Differential Equations-2)
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Runge-Kutta Methods

U From two function evaluations, we can go to
several functional evaluation methods which
improve accuracy.

Y1 = Vn +th:7iki, with Z;/ =1

i=1 i=1

Note that k3 are the slopes or f(x;y;) evaluated
at several i

QThe values of (x,y;) are chosen appropriately
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Runge-Kutta Methods (cont’'d)

QIn general
k,=f(x,y,)

ki :f[(xn +hax )’( yn +hiﬂi,jkj—l )J

Yn+i =yn+hzr:7l-ki, with Zr:}/l =]

i=1 i=1

The coefficients &, 8 and ¥ are obtained
using Taylor Series
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Runge-Kutta Fourth Order Method

a P k=fx)
2|2 k,= f(x, +0.5h,y, +h(0.5k, ))
L10 4 k, = f(x,+0.5h,y, +h(0.5k, ))
100 0 1 k=flx,+hy, +hk)
12 2 1 y=y"+h/6(k, +2k,+ 2k, +k,)
V.6 & 6 &

A large variety of methods upto sixth order global
accuracy are available (Refer Numerical Solution of
ODE by M.K. Jain, Wiley Eastern, 1987)
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Multi-step Methods

 Till now we have marched one-step at a time
which involves typically n functional evaluations
for the n" order method

The question is whether we can have the
same order of accuracy using fewer functional
evaluations?

Multi-step methods precisely accomplish this
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Adams Method

Ynsl Xnt1

d——f(xy) = jdy—jf(xy)dx

X

Backward P5 (x)

@
D)

O—=CO O
n-1 n n+1

I

Integration
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Adams Method (Cont’d)

Ps(x)=f(x,1)+sz(x,l)+”)(++”V2f(x,l)
+(S)(S+;/)(S+2)V3f(xn)+sC4h4f’V(§)
1 f(x,,)+sz(x,,)+(”(””Vf( )
yn+]_yn:.[h )i 2 ds
) +(S)(S+ )(s+ )ij(xn)+sC4h4f’V(§)

3!
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Adams Method (Cont’d)

\%a V' f V' f

(fi-fo) : -

(f-fy) (f-2f;+fo) -

(fa-f2) (fg-2f+h) (f5-3f2+3f4-fo)

yn+1

h
= yn + Z (55j:n - 59j:n—1 + 37j:n—2 - 9j:n—3)

251
h5 \%4
720 (&)
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Adams-Moulton Method (Cont’d)
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Adams-Moulton Method
Backward P5 (x)
! I
Predictor O—O—O—O0—0
n-3 n-2 n-1 n n+1
Integration
Backward P5 (x)
Corrector O—O—0—=0 &
n-3 n-2 n-1 n n+1
1
Integration
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A-M with Error Correction

_ . 251 .,
A Ry
yn+1 yn+1 720 y (5)
19
= C 5.V
=y ——h
yn+l yn+l 720 y (é)
194251
c _ P :hS \%
yn+1 yn+1 y (5)[ 720 J

19
C,Mop — C _ C _ P
yn+l yn+l [19+251j(yn+1 yn+l)

Predictor
» h 251 5 o
=y, +—U05f,-59f,,+37f,,—9 +——h
yn+1 yn 24( fn fn—] fn—2 fn—3) 720 y (g)
Corrector
Vo =V O f H19f, =5 o+ frs ) Y (£)
n+l1 n 24 n+l1 n n—1 n—2 720
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Milne’s Method
Backward P, (x)
Prediccor O—O—O0—=C O
n-3 n-2 n-1 n I’H{l
Integration

Backward P, (x)

Corrector O—O o—=oC O
n-3 n-2 n-1 n n+1

Integration
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Milne’s Method (Cont’d)

Predictor
Y = Yua +43h @f, = fia+2f,2)+ 53 R y' (&)

Corrector
Yot = Y +;l(fn+1 +4f, + fon )—910 Ry (&)
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General Comments

O Multi-step methods are efficient as they can
give higher order accuracy with just one
function evaluation

QMilne’s method had simple coefficients, but
has stability issues

O Adam’s Moulton is the most preferred among
multi-step methods

QError estimated with the method can be used
to correct and mop the error

OHowever, explicit methods like R-K methods
can be used to adapt and control errors
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Method for Error Control

O We have seen earlier that for stability of the
algorithms, step size has to be controlled

QO Establishing stability limits for higher order
methods is laborious.

QThese have been done, but rarely are they
applied as many times the accuracy overrides
stability

QUsually error control is established by choosing
adaptive methods which chooses h automatically.

OR-K methods are most suited for adaptive
algorithms as these are one-step methods
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Error Control (Cont’d)

QIf the magnitude of tolerable error is known,
then the step size can be reduced till the
estimated error is smaller than the acceptable
error.

QIf during later part of the computation, the
error is too small, then the step size can be
doubled.

O We shall look at these in the next lecture

QO We shall also look at the methods for higher
order ODEs.




