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Error Analysis of ODE Solvers-I

� Before looking at adaptive methods, let us look at the 
stability of RK-4 method

� By definition, stability is defined as the propagation of 
the Round Off Error

� Let us first look at the equation that will govern the 
errors
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Error Analysis of ODE Solvers-II

Eq. 3 can be written as
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For linear stability 

analysis, we can write y
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The exact solution for Eq. 4 in the neighbourhood of (x0, y0) is
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Error Analysis of ODE Solvers-III

If we are solving numerically using Euler’s Method

This is exactly what we got earlier in a different manner
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Thus stability of a differential equation solved by a 

numerical method is to obtain the solution for the equation
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Error Analysis of RK-4 

� The method gets messy as we attempt the answers 
for higher order equations
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where, λ = fy (x,y)

Applying RK-4
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Thus, the stability conditions for  RK-4 scheme are:
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Error Analysis of RK-4 (Cont’d) Error Analysis of RK-4 (Cont’d) 
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Implies that for h >0, λ has to be < 0

� Since it is not easy to find the condition of h for a given 
λ, we shall plot the same and appreciate the condition

� The condition for 
stability is

078.2 ≤≤− hλ

� Error propagation is 
minimum at

6.1−≈hλ-3 -2 -1 0
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Stability limits of RK-4 and Euler

RK-4

Euler
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� We have seen that every numerical method has an 
associated error

� The errors are of two types

� The truncation error is associated with truncating the 
Taylor series to finite number of terms

� The roundoff error is associated with the limitied digits 
the computers work with

� The final error is a combination of both the errors.

� Estimation of truncation errors have been presented 
earlier and we shall visit them again

� The roundoff errors can amplify and have to be 
controlled by using stable methods

� Arriving at stability criterion can be laborious

� Further, the step size will vary from problem to problem 
and specifying time steps apriori is difficult

Error Control Error Control
� The multistep methods have a problem in adjusting the 

step size as the formulae are based on constant step 
sizes

� Though they are inferior, as they cannot adapt without 
interpolation, they are still used by many for constant 
step sizes.

� The predictor-corrector methods can estimate the error 
and this can be exploited.

� We had seen the Adams-Moulton method as
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Error Control (Cont’d)
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� If the error is too high, then the step size is reduced

� However, once the step is reduced, the method has to 
be started all over again. Interpolation may be used for 
generating necessary steps for higher order methods

� The best approach is to use single step method like RK 
method and adapt accordingly.

� The most popular approach is to use RK-4 and 
computation is carried out twice

� Once a step of h is taken and then the same is repeated 
with two steps of h/2 and error is estimated as follows

yexact = yN-h + C h
5 (1)

yexact = yN-0.5h +2C (h/2)
5 (2)

� Eq 1 – Eq 2 gives

0 = yN-h - yN-0.5h + C h
5 (1-1/16)

Error Control (Cont’d)
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�Thus the error is estimated and if this is less than 
tolerance/16, we can double step size

�If error is more than the tolerance, the step size 
shall be reduced by a factor of two

�Usually a factor of 1.5 to 2 is used as safety to 
prevent oscillation of the method. Thus the 
criterion for  doubling is error < Tol/(16*safety)

yN-0.5h - yN-h = (15/16)C h
5⇒

(yN-0.5h - yN-h)/15= Ch
5/16⇒

Error Control (Cont’d)

� Often it is better to specify the tolerance on nomalized 
values of y

� The best way is to divide the error by y and specify a 
tolerance for this, say 1e-5

� This will have a problem if y crosses zero

� The alternative is to define yscale as 

dx

dy
hyyscale +=

� Since dy/dx = f(x,y) is the function value that would 
have been estimated, yscale can be obtained 

Error Control (Cont’d)

Set of ODE’s
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� A set of ODEs are solved very similarly
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� Modified Euler’s method

Higher Order equations

This equation is a stiff 
equation with Solution  
y=e-3x+e-0.1x
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� We can split the above equation as
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Runge-Kutta Fourth Order Method
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Sample Problem

� Analytical Solution for the given equation

x3x1.0 eey −− +=

A step sixe of dx = 0.05 is

required for accurate sol.
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Adaptive method

A step size of dx = 0.05 is would require

1000 steps upto x = 50.

Adaptive method with a tolerance of 10-5

for relative error needs only 75 steps

Boundary Value Problem

.1)(f,0)0(f,0)0(f;0f2ff =∞′=′==′′′+′′

� This equation is the classical Blasius Equation

� It does not have an analytical solution

� Numerical solution obtained suggests x=10 can be 
considered infinite

� The solution can be found by the IVP approach 
iteratively

� For this f’’(0) is first assumed and adjusted till f’(10) 
obtained numerically is 0

� This approach is called shooting method
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Shooting method

The equation is split into a system of three first

order equations
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