ME 704

Computational Methods in Thermal and Fluids Engineering
(KNI-3 Ordinary Differential Equations)

Error Analysis of ODE Solvers-II

$$
\text { Defining } \quad \varepsilon=y_{N}-\bar{y}
$$

Eq. 3 can be written as

$$
\begin{align*}
\frac{d \varepsilon}{d x} & =f(x, \bar{y}+\varepsilon)-f(x, \bar{y}) \\
& =f(x, \bar{y})+\varepsilon \frac{\partial(f(x, \bar{y}))}{\partial y}+O\left(\varepsilon^{2}\right)-f(x, \bar{y}) \tag{4}
\end{align*}
$$

$\begin{aligned} & \text { For linear stability } \\ & \text { analysis, we can write }\end{aligned} \quad \frac{d \varepsilon}{d x}=\varepsilon \frac{\partial f(x, \bar{y})}{\partial y}$
The exact solution for Eq. 4 in the neighbourhood of $\left(x_{0}, y_{0}\right)$ is

$$
\begin{equation*}
\varepsilon=\left.\varepsilon_{0} e^{\left(x-x_{0}\right) \frac{\partial f}{\partial y}}\right|_{\left(x_{0}, y_{0}\right)} \tag{5}
\end{equation*}
$$

Error Analysis of ODE Solvers-I

- Before looking at adaptive methods, let us look at the stability of RK-4 method
By definition, stability is defined as the propagation of the Round Off Error
Let us first look at the equation that will govern the errors
The exact governing equation is $\frac{d \bar{y}}{d x}=f(x, \bar{y})$ (1)
$\begin{aligned} & \text { The Numerical solution is } \\ & \text { obtained for }\end{aligned} \quad \frac{d y_{N}}{d x}=f\left(x, y_{N}\right)$
$\underset{\text { Eq. } 2-\text { Eq. } 1}{\text { implies }} \quad \frac{d\left(y_{N}-\bar{y}\right)}{d x}=f\left(x, y_{N}\right)-f(x, \bar{y})$

Error Analysis of ODE Solvers-III

If we are solving numerically using Euler's Method

$$
\begin{aligned}
& \varepsilon_{n+1}=\varepsilon_{n}+\left.h \varepsilon_{n} \frac{\partial f}{\partial y}\right|_{\left(x_{n}, y_{n}\right)} \\
& \Rightarrow \frac{\varepsilon_{n+1}}{\varepsilon_{n}}=1+\left.h \frac{\partial f}{\partial y}\right|_{\left(x_{n}, y_{n}\right)}
\end{aligned}
$$

This is exactly what we got earlier in a different manner
Thus stability of a differential equation solved by a numerical method is to obtain the solution for the equation

$$
\frac{d \varepsilon}{d x}=\varepsilon f_{y}(x, y)
$$

The stability conditions are imposed by $\quad G=\left|\frac{\varepsilon_{n+1}}{\varepsilon_{n}}\right| \leq 1$

Error Analysis of RK-4

- The method gets messy as we attempt the answers for higher order equations

$$
\frac{d \varepsilon}{d x}=\varepsilon f_{y}(x, y)=\lambda \varepsilon \quad \text { where, } \lambda=f_{y}(x, y)
$$

Applying RK-4

$$
\begin{aligned}
& \varepsilon^{n+1}=\varepsilon^{n}+h / 6\left(k_{1}+2 k_{2}+2 k_{3}+k_{4}\right) \\
& k_{1}=f\left(x_{n}, \varepsilon_{n}\right)=\lambda \varepsilon_{n} \\
& k_{2}=f\left(x_{n}+0.5 h, \varepsilon_{n}+h 0.5 k_{1}\right)=\lambda\left(\varepsilon_{n}+h 0.5 k_{1}\right) \\
& \quad=\lambda\left(\varepsilon_{n}+h 0.5 \lambda \varepsilon_{n}\right) \\
& \quad=\lambda \varepsilon_{n}(1+0.5 \lambda h)
\end{aligned}
$$

$$
\begin{aligned}
k_{3} & =f\left(x_{n}+0.5 h, \varepsilon_{n}+h 0.5 k_{2}\right)=\lambda\left(\varepsilon_{n}+h 0.5 k_{2}\right) \\
& =\lambda\left(\varepsilon_{n}+h 0.5\left[\lambda \varepsilon_{n}(1+0.5 \lambda h)\right]\right) \\
& =\lambda\left(\varepsilon_{n}+h 0.5\left[\lambda \varepsilon_{n}+0.5 \lambda^{2} h \varepsilon_{n}\right]\right) \\
& =\lambda\left(\varepsilon_{n}+h 0.5 \lambda \varepsilon_{n}+0.25 \lambda^{2} h^{2} \varepsilon_{n}\right) \\
& =\lambda \varepsilon_{n}\left(1+\lambda h 0.5+0.25 \lambda^{2} h^{2}\right) \\
k_{4} & =f\left(x_{n}+h, \varepsilon_{n}+h k_{3}\right)=\lambda\left(\varepsilon_{n}+h k_{3}\right) \\
& =\lambda\left(\varepsilon_{n}+h\left[\lambda \varepsilon_{n}\left(1+0.5 \lambda h+0.25 \lambda^{2} h^{2}\right)\right]\right) \\
& =\lambda\left(\varepsilon_{n}+h \lambda \varepsilon_{n}+0.5 \lambda^{2} h^{2} \varepsilon_{n}+0.25 \lambda^{3} h^{3} \varepsilon_{n}\right) \\
& =\lambda \varepsilon_{n}\left(1+h \lambda+0.5 \lambda^{2} h^{2}+0.25 \lambda^{3} h^{3}\right)
\end{aligned}
$$

Error Analysis of RK-4 (Cont'd)

$$
\begin{gathered}
\varepsilon^{n+1}=\varepsilon^{n}+h / 6\left(k_{1}+2 k_{2}+2 k_{3}+k_{4}\right) \\
\Rightarrow \varepsilon_{n+1}=\varepsilon_{n}+\frac{h \lambda \varepsilon_{n}}{6}\binom{1+2(1+0.5 \lambda h)+2\left(1+0.5 \lambda h+0.25 \lambda^{2} h^{2}\right)+}{1+\lambda h+0.5 \lambda^{2} h^{2}+0.25 \lambda^{3} h^{3}} \\
\Rightarrow \frac{\varepsilon_{n+1}}{\varepsilon_{n}}=1+\frac{h \lambda}{6}\left(6+3 \lambda h+\lambda^{2} h^{2}+0.25 \lambda^{3} h^{3}\right) \\
=1+\lambda h+\frac{\lambda^{2} h^{2}}{2!}+\frac{\lambda^{3} h^{3}}{3!}+\frac{\lambda^{3} h^{3}}{4!}
\end{gathered}
$$

Thus, the stability conditions for RK-4 scheme are:

$$
-1 \leq 1+\lambda h+\frac{\lambda^{2} h^{2}}{2!}+\frac{\lambda^{3} h^{3}}{3!}+\frac{\lambda^{3} h^{3}}{4!} \leq 1
$$

Error Analysis of RK-4 (Cont'd)

The condition $\quad 1+\lambda h+\frac{\lambda^{2} h^{2}}{2!}+\frac{\lambda^{3} h^{3}}{3!}+\frac{\lambda^{3} h^{3}}{4!} \leq 1$
Implies that for $h>0, \lambda$ has to be <0

- Since it is not easy to find the condition of h for a given λ, we shall plot the same and appreciate the condition

- The condition for stability is
$-2.78 \leq \lambda h \leq 0$
- Error propagation is minimum at

Error Control

- We have seen that every numerical method has an associated error
- The errors are of two types
- The truncation error is associated with truncating the Taylor series to finite number of terms
- The roundoff error is associated with the limitied digits the computers work with
The final error is a combination of both the errors.
\square Estimation of truncation errors have been presented earlier and we shall visit them again
- The roundoff errors can amplify and have to be controlled by using stable methods
- Arriving at stability criterion can be laborious
- Further, the step size will vary from problem to problem and specifying time steps apriori is difficult

Error Control

- The multistep methods have a problem in adjusting the step size as the formulae are based on constant step sizes
Though they are inferior, as they cannot adapt without interpolation, they are still used by many for constant step sizes.
- The predictor-corrector methods can estimate the error and this can be exploited.
. We had seen the Adams-Moulton method as
Predictor
$y_{n+1}^{P}=y_{n}+\frac{h}{24}\left(55 f_{n}-59 f_{n-1}+37 f_{n-2}-9 f_{n-3}\right)+\frac{251}{720} h^{5} y^{V}(\xi)$
Corrector
$y_{n+1}^{C}=y_{n}+\frac{h}{24}\left(9 f_{n+1}+19 f_{n}-5 f_{n-1}+f_{n-2}\right)-\frac{19}{720} h^{5} y^{V}(\xi)$

Error Control (Cont'd)

$$
\begin{gathered}
\bar{y}_{n+1}=y_{n+1}^{P}+\frac{251}{720} h^{5} y^{V}(\xi) \\
\bar{y}_{n+1}=y_{n+1}^{C}-\frac{19}{720} h^{5} y^{V}(\xi) \\
\therefore y_{n+1}^{C}-y_{n+1}^{P}=h^{5} y^{V}(\xi)\left(\frac{19+251}{720}\right) \\
y_{n+1}^{C, M o p}=y_{n+1}^{C}+\left(\frac{19}{19+251}\right)\left(y_{n+1}^{C}-y_{n+1}^{P}\right)
\end{gathered}
$$

Error Control (Cont'd)

If the error is too high, then the step size is reduced

- However, once the step is reduced, the method has to be started all over again. Interpolation may be used for generating necessary steps for higher order methods
The best approach is to use single step method like RK method and adapt accordingly.
- The most popular approach is to use RK-4 and computation is carried out twice
- Once a step of h is taken and then the same is repeated with two steps of $h / 2$ and error is estimated as follows

$$
\begin{align*}
& y_{\text {exact }}=y_{N-h}+C h^{5} \tag{1}\\
& y_{\text {exact }}=y_{N-0.5 h}+2 C(h / 2)^{5} \tag{2}
\end{align*}
$$

- Eq 1 - Eq 2 gives
$0=y_{N-h}-y_{N-0.5 \mathrm{~h}}+C h^{5}(1-1 / 16)$

Error Control (Cont'd)

$\Rightarrow y_{N-0.5 \mathrm{~h}}-\mathrm{y}_{\mathrm{N}-\mathrm{h}}=(15 / 16) \mathrm{Ch}^{5}$
$\Rightarrow\left(\mathrm{y}_{\mathrm{N}-0.5 \mathrm{~h}}-\mathrm{y}_{\mathrm{N}-\mathrm{h}}\right) / 15=\mathrm{Ch}^{5} / 16$
-Thus the error is estimated and if this is less than tolerance/16, we can double step size
IIf error is more than the tolerance, the step size shall be reduced by a factor of two
UUsually a factor of 1.5 to 2 is used as safety to prevent oscillation of the method. Thus the criterion for doubling is error < Tol/(16*safety)

Error Control (Cont'd)

Often it is better to specify the tolerance on nomalized values of y

- The best way is to divide the error by y and specify a tolerance for this, say 1e-5
- This will have a problem if y crosses zero
- The alternative is to define $y_{\text {scale }}$ as

$$
y_{\text {scale }}=|y|+\left|h \frac{d y}{d x}\right|
$$

Since $d y / d x=f(x, y)$ is the function value that would have been estimated, $y_{\text {scale }}$ can be obtained

Set of ODE's

- A set of ODEs are solved very similarly
$\frac{d y}{d x}=f_{1}(x, y, z) \quad$ with $\quad y=y_{o} \quad$ at $\quad x=x_{o}$
$\frac{d z}{d x}=f_{2}(x, y, z) \quad$ with $\quad z=z_{o}$ at $x=x_{o}$
- Modified Euler's method
$k_{11}=f_{1}\left(x_{n}, y_{n}, z_{n}\right) \quad k_{21}=f_{1}\left(x_{n}+h, y^{n+1}, z^{n+1}\right)$
$k_{12}=f_{2}\left(x_{n}, y_{n}, z_{n}\right) \quad k_{22}=f_{2}\left(x_{n}+h, y^{n+1}, z^{n+1}\right)$
$y^{n+1}=y^{n}+h\left(k_{11}\right) \quad y^{n+1}=y^{n}+h / 2\left(k_{11}+k_{21}\right)$
$z^{n+1}=z^{n}+h\left(k_{12}\right) \quad z^{n+1}=z^{n}+h / 2\left(k_{12}+k_{22}\right)$

Higher Order equations

$\frac{d^{2} y}{d x^{2}}+3.1 \frac{d y}{d x}+0.3 y=0 \quad \begin{aligned} & \text { This equation is a stiff } \\ & \text { equation with Solution } \\ & \mathrm{y}=\mathrm{e}^{-3 \mathrm{x}}+\mathrm{e}^{-0.1 \mathrm{x}}\end{aligned}$
with $\quad y(x=0)=2, \quad \frac{d y}{d x}(x=0)=-3.1$

- We can split the above equation as
$\frac{d y}{d x}=z \quad$ with $\quad y(x=0)=2$,
$\frac{d z}{d x}=-3.1 z-0.3 y \quad$ with $\quad z(x=0)=-3.1$

Runge-Kutta Fourth Order Method

```
\(k_{l l}=f_{l}\left(x_{n}, y_{n}, z_{n}\right)\)
\(k_{12}=f_{2}\left(x_{n}, y_{n}, z_{n}\right)\)
\(k_{21}=f_{1}\left(x_{n}+0.5 h, y_{n}+h\left(0.5 k_{11}\right), z_{n}+h\left(0.5 k_{12}\right)\right)\)
\(k_{22}=f_{2}\left(x_{n}+0.5 h, y_{n}+h\left(0.5 k_{11}\right), z_{n}+h\left(0.5 k_{12}\right)\right)\)
\(k_{3 l}=f_{l}\left(x_{n}+0.5 h, y_{n}+h\left(0.5 k_{21}\right), z_{n}+h\left(0.5 k_{22}\right)\right)\)
\(k_{32}=f_{2}\left(x_{n}+0.5 h, y_{n}+h\left(0.5 k_{21}\right), z_{n}+h\left(0.5 k_{22}\right)\right)\)
\(k_{41}=f_{l}\left(x_{n}+h, y_{n}+h k_{31}, z_{n}+h k_{32}\right)\)
\(k_{42}=f_{2}\left(x_{n}+h, y_{n}+h k_{31}, z_{n}+h k_{32}\right)\)
\(y^{n+1}=y^{n}+h / 6\left(k_{11}+2 k_{21}+2 k_{31}+k_{41}\right)\)
\(z^{n+1}=z^{n}+h / 6\left(k_{12}+2 k_{22}+2 k_{32}+k_{42}\right)\)
```


Sample Problem

- Analytical Solution for the given equation
$y=e^{-0.1 x}+e^{-3 x}$

Boundary Value Problem

$f f^{\prime \prime}+2 f^{\prime \prime \prime}=0 ; \quad f(0)=0, f^{\prime}(0)=0, f^{\prime}(\infty)=1$.

- This equation is the classical Blasius Equation
- It does not have an analytical solution
- Numerical solution obtained suggests $\mathrm{x}=10$ can be considered infinite
- The solution can be found by the IVP approach iteratively
- For this $f^{\prime \prime}(0)$ is first assumed and adjusted till $f^{\prime}(10)$ obtained numerically is 0
- This approach is called shooting method

Shooting method

The equation is split into a system of three first order equations

$$
\begin{array}{ll}
\frac{d f}{d x}=f_{1}, & f(0)=0 \\
\frac{d f_{1}}{d x}=f_{2}, & f_{1}(0)=0 \\
\frac{d f_{2}}{d x}=\frac{-d f_{2}}{2}, & f_{2}(0)=0(\text { assumed })
\end{array}
$$

