ME 704
 Computational Methods in Thermal and Fluids Engineering
 (KNI-4 Ordinary Differential Equations)

Direct Solutions of BVP

- Finite difference methods can be used to obtain solutions that will satisfy boundary conditions automatically
- For a non-linear system the equations have to be linearized, as otherwise solutions become messy
- Step size sensitivity studies have to be performed before accepting the solutions as satisfactory

Comments on Shooting Method

- Shooting methods need iterative solutions
- This may create convergence problems but usually it can be circumvented by judicial under relaxation
- The advantage is that we can easily get $4^{\text {th }}$ order solutions
- Non-linearity does not require any special treatment

Finite difference principles

- In this method, the derivatives are replaced by finite differences
- The domain is discretised into finite number of regions (say N)
- A system of linear equations is formed for the N unknown values of the functions
- Several approaches with varying accuracy are possible
- Popular approaches restrict the order of method upto second order

Finite differences-I

- The finite differences for derivatives can be obtained very easily by Newton interpolating polynomials derived earlier
- The same can also be obtained by Taylor series
- Since Taylor series derivation is easy for first and second derivatives upto second order it is illustrated first.

Finite differences-III

- To get consistent accuracies near boundaries, often we need to get forward and backward differences
- This is easily obtained by using Newton's forward interpolating polynomial
- A system of linear equations is formed for the N unknown values of the functions
- Consider four points in the neighbourhood that are a distance h from each other

Finite differences -II

$$
\begin{aligned}
& f(x+h)=f(x)+h f^{\prime}(x)+\frac{h^{2}}{2!} f^{\prime \prime}(x)+\frac{h^{3}}{3!} f^{\prime \prime \prime}(x)+O\left(h^{4}\right) \\
& f(x-h)=f(x)-h f^{\prime}(x)+\frac{h^{2}}{2!} f^{\prime \prime}(x)-\frac{h^{3}}{3!} f^{\prime \prime \prime}(x)+O\left(h^{4}\right) \\
& \Rightarrow f(x+h)-f(x-h)=2 h f^{\prime}(x)+2 \frac{h^{3}}{3!} f^{\prime \prime \prime}(x)+O\left(h^{4}\right) \\
& \Rightarrow f(x+h)+f(x-h)=2 f(x)+h^{2} f^{\prime \prime}(x)+O\left(h^{4}\right) \\
& \Rightarrow f^{\prime}(x)=\frac{f(x+h)-f(x-h)}{2 h}+O\left(h^{2}\right) \\
& \Rightarrow f^{\prime \prime}(x)=\frac{f(x+h)+f(x-h)-2 f(x)}{h^{2}}+O\left(h^{2}\right)
\end{aligned}
$$

The above two relations are called the centered approximations

Finite differences-IV

- With four points we can fit a polynomial of third order which will be fourth order accurate
- When the first derivative is taken, then this approximation will drop to third order accuracy
- The same will become second order accurate, when second derivative is expressed
- First we shall derive second order accurate formulas by dropping one of the term and compare the results with the previously obtained ones.

Finite differences -V

- Third Order Polynomial

$$
\begin{aligned}
P_{3}\left(x_{0}+s h\right) & =f(0)+s \Delta f(0)+\frac{s(s-1)}{2} \Delta^{2} f(0) \\
+ & \frac{s(s-1)(s-2)}{6} \Delta^{3} f(0)+O\left(h^{4}\right) \\
= & f_{0}+s\left(f_{1}-f_{0}\right)+\frac{s^{2}-s}{2}\left(f_{2}-2 f_{1}+f_{0}\right) \\
& +\frac{s^{3}-3 s^{2}+2 s}{6}\left(f_{3}-3 f_{2}+3 f_{1}-f_{0}\right)+O\left(h^{4}\right)
\end{aligned}
$$

Finite differences -VII

- To get derivatives at x_{0} the value of s will be 0 and to get the same at x_{1}, x_{2} and x_{3}, the values of s will be 1, 2 and 3 respectively
- Thus, we can get backward, forward and centered differences from a single expression just by changing the value of s.
- First, let us get relations for first derivatives that are second order accurate at these points
\square The first derivative One sided Difference at x_{0} can be expressed as
$P_{2}^{\prime}\left(x_{0}+s h\right)=\left\{\left(f_{1}-f_{0}\right)+\frac{2 s-1}{2}\left(f_{2}-2 f_{1}+f_{0}\right)\right\} \frac{1}{h}+O\left(h^{2}\right)$

Finite differences -VI

\square The first derivative

$$
\begin{aligned}
& P_{3}^{\prime}\left(x_{0}+s h\right)=\left\{\left(f_{1}-f_{0}\right)+\frac{2 s-1}{2}\left(f_{2}-2 f_{1}+f_{0}\right)\right. \\
& \left.\quad+\frac{3 s^{2}-6 s+2}{6}\left(f_{3}-3 f_{2}+3 f_{1}-f_{0}\right)+O\left(h^{4}\right)\right\} \frac{1}{h}
\end{aligned}
$$

\square The second derivative

$$
\begin{aligned}
P_{3}^{\prime \prime}\left(x_{0}+s h\right)= & \left\{\left(f_{2}-2 f_{1}+f_{0}\right)+\right. \\
& \left.\frac{6 s-6}{6}\left(f_{3}-3 f_{2}+3 f_{1}-f_{0}\right)+O\left(h^{4}\right)\right\} \frac{1}{h^{2}}
\end{aligned}
$$

Finite differences -VIII

\square Putting $s=0$, we get

$$
\begin{aligned}
P_{2}^{\prime}\left(x_{0}\right) & =\left\{\left(f_{1}-f_{0}\right)-\frac{1}{2}\left(f_{2}-2 f_{1}+f_{0}\right)\right\} \frac{1}{h}+O\left(h^{2}\right) \\
& =\frac{\left(-f_{2}+4 f_{1}-3 f_{0}\right)}{2 h}+O\left(h^{2}\right) \text { Forward Difference }
\end{aligned}
$$

\square Putting $s=1$, we get

$$
\begin{aligned}
P_{2}^{\prime}\left(x_{1}\right) & =\left\{\left(f_{1}-f_{0}\right)+\frac{1}{2}\left(f_{2}-2 f_{1}+f_{0}\right)\right\} \frac{1}{h}+O\left(h^{2}\right) \\
& =\frac{\left(f_{2}-f_{0}\right)}{2 h}+O\left(h^{2}\right) \quad \begin{array}{l}
\text { It has become } \\
\text { centered Difference }
\end{array}
\end{aligned}
$$

Finite differences -IX

\square Putting $s=2$, we get

$$
\begin{aligned}
P_{2}^{\prime}\left(x_{2}\right) & =\left\{\left(f_{1}-f_{0}\right)+\frac{3}{2}\left(f_{2}-2 f_{1}+f_{0}\right)\right\} \frac{1}{h}+O\left(h^{2}\right) \\
& =\frac{\left(3 f_{2}-4 f_{1}+f_{0}\right)}{2 h}+O\left(h^{2}\right) \begin{array}{l}
\text { It has become } \\
\text { Backward Difference }
\end{array}
\end{aligned}
$$

\square We can get third order accurate one sided differences by using 3 terms and putting $s=0$ and 3

$$
\begin{aligned}
& P_{3}^{\prime}\left(x_{0}+s h\right)=\left\{\left(f_{1}-f_{0}\right)+\frac{2 s-1}{2}\left(f_{2}-2 f_{1}+f_{0}\right)\right. \\
& \left.\quad+\frac{3 s^{2}-6 s+2}{6}\left(f_{3}-3 f_{2}+3 f_{1}-f_{0}\right)+O\left(h^{4}\right)\right\} \frac{1}{h}
\end{aligned}
$$

Simple Application-I

$$
\begin{aligned}
& \frac{d^{2} y}{d x^{2}}+a \frac{d y}{d x}+b y=0 \\
& \text { with } \quad y(x=0)=y_{0}, \quad y(x=L)=y_{L}
\end{aligned}
$$

Finite differences -X

$$
P_{3}^{\prime}\left(x_{0}\right)=\left\{\left(f_{1}-f_{0}\right)-\frac{1}{2}\left(f_{2}-2 f_{1}+f_{0}\right)\right.
$$

$$
\left.+\frac{2}{6}\left(f_{3}-3 f_{2}+3 f_{1}-f_{0}\right)\right\} \frac{1}{h}+O\left(h^{3}\right)
$$

$$
=\frac{\left.2 f_{3}-9 f_{2}+18 f_{1}-11 f_{0}\right)}{6 h}+O\left(h^{3}\right)
$$

$$
P_{3}^{\prime}\left(x_{3}\right)=\left\{\left(f_{1}-f_{0}\right)+\frac{5}{2}\left(f_{2}-2 f_{1}+f_{0}\right)\right.
$$

$$
\left.+\frac{11}{6}\left(f_{3}-3 f_{2}+3 f_{1}-f_{0}\right)\right\} \frac{1}{h}+O\left(h^{3}\right)
$$

$$
=\frac{\left.11 f_{3}-18 f_{2}+9 f_{1}-2 f_{0}\right)}{6 h}+O\left(h^{3}\right) \text { Backward Difference }
$$

Simple Application-II

$$
\begin{aligned}
& \left.\frac{d^{2} y}{d x^{2}}\right|_{i}=\frac{y(i+1)-2 y(i)+y(i-1)}{h^{2}} \\
& \left.\frac{d y}{d x}\right|_{i}=\frac{y(i+1)-y(i-1)}{2 h}
\end{aligned}
$$

The finite difference equation for node I is

$$
\frac{y(i+1)-2 y(i)+y(i-1)}{h^{2}}+a \frac{y(i+1)-y(i-1)}{2 h}+b y(i)=0
$$

Simple Application-III

Multiplying by h^{2} and collecting coefficients we get

$$
y(i+1)(1+0.5 a h)+y(i)\left(b h^{2}-2\right)+y(i-1)(1-0.5 a h)=0
$$

$$
\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
a_{21} & a_{22} & a_{23} & 0 \\
0 & a_{32} & a_{33} & a_{34} \\
0 & 0 & 0 & 1
\end{array}\right]\left\{\begin{array}{c}
y_{1} \\
y_{2} \\
y_{n-1} \\
y_{n}
\end{array}\right\}=\left\{\begin{array}{c}
y_{0} \\
b_{2} \\
b_{n-1} \\
y_{L}
\end{array}\right\}
$$

We can solve for y's using TDMA

Simple Application-IV

-Treatment of Neumann Boundary Condition

$$
\frac{d^{2} y}{d x^{2}}+a \frac{d y}{d x}+b y=0
$$

$$
\text { with } y(x=0)=y_{0}, \frac{d y}{d x}(x=L)=y_{L}^{\prime}
$$

- METHOD-1 Extended Domain Method

Simple Application-V

\square However, the solution can be obtained as for the Dirichlet Boundary Condition as the matrix is tri-diagonal

- The loss of accuracy near the boundary condition may not be acceptable
This can be overcome by using higher order formulation at the boundary
- METHOD-2 Higher Order Boundary Method

We have shown that a third order accurate derivative can be expressed at the boundary as

Simple Application-VI

The above can be rearranged as

$$
6 h y_{L}^{\prime}=11 y_{i}-18 y_{i-1}+9 y_{i-2}-2 y_{i-3}
$$

This formulation will break the tri-diagonal structure

Treatment of Non-Linearity-I

- Consider a non-linear Equation

$$
y^{\prime \prime}+2 y^{2} y^{\prime}=0
$$

When a finite difference equation is written for a node, it will lead to a non-linear equation due to the presence of higher order powers

- In such cases to get a linear form of the equation, we need to resort to iterations
- The procedure is to assume a y distribution
- Linearise and solve for y
- Iterate until convergence is reached
- The underlying principles used in linearisation are discussed in next slide

Simple Application-VII

A tri-diagonal matrix will be obtained by performing two Gauss operations

- First by performing Gauss Operation between i-2 and i rows, $\mathrm{a}_{(\mathrm{i}-3), \mathrm{i}}$ can be reduced to 0
- Then by performing a Gauss operation between i-1 and I rows, we can reduce $\mathrm{a}_{(\mathrm{i}-2), \mathrm{i}}$ to 0
Thus, tri-diagonal structure is restored and can be solved by TDMA

Treatment of Non-Linearity-II

- The term $y^{2} y^{\prime}$ is linearised as

$$
\left(y^{2}\right)^{k}\left(y^{\prime}\right)^{k+1}
$$

\square Thus, while solving, y^{2} value is always known and becomes a coefficient in the matrix
\square Frequently, the methods tend to diverge

- To facilitate convergence, under-relaxation is employed

$$
(y)^{k+1}=\alpha(y)^{k+1}+(1-\alpha)(y)^{k}
$$

- α is assumed to have a value between 0 and 1
\square The above suppresses wild variations of y introduced by the iteration method
- Severe non-linearity may force the value of α close to zero

Convergence criterion is similar to what we normally do by controlling the normalized values between the iterations

