ME 704

Computational Methods in Thermal and
Fluids Engineering

(KNI-4 Ordinary Differential Equations)

Comments on Shooting Method

» Shooting methods need iterative solutions
» This may create convergence problems

but usually it can be circumvented by
judicial under relaxation

The advantage is that we can easily get 4t
order solutions

Non-linearity does not require any special
treatment

Direct Solutions of BVP

+ Finite difference methods can be used to obtain
solutions that will satisfy boundary conditions
automatically

» For a non-linear system the equations have to
be linearized, as otherwise solutions become
messy

» Step size sensitivity studies have to be

performed before accepting the solutions as
satisfactory

Finite difference principles

In this method, the derivatives are replaced by
finite differences

The domain is discretised into finite number of
regions (say N)

A system of linear equations is formed for the N
unknown values of the functions

Several approaches with varying accuracy are
possible

Popular approaches restrict the order of method
upto second order




Finite differences-I

» The finite differences for derivatives can be
obtained very easily by Newton interpolating
polynomials derived earlier

» The same can also be obtained by Taylor series

+ Since Taylor series derivation is easy for first
and second derivatives upto second order it is
illustrated first.

Finite differences -II
F(x+h)=f(x)+hf(x)+% f(x)+ 5 f"(x)+O(h")
f(x=h)= f(x)=hf(x)+5 f(x)=4 f"(x)+ O(h")
:>f(x+h)—f(x—h):2hf’(x)+2’;—jf”(x)+0(h4)

= f(x+h)+f(x—h)=2f(x)+h’f"(x)+O(h")
f(x+h)=f(x=h)

= f(x)= = +O(I* )

The above two relations are called the centered approximations

Finite differences-ll|

To get consistent accuracies near boundaries, often
we need to get forward and backward differences

This is easily obtained by using Newton’s forward
interpolating polynomial
A system of linear equations is formed for the N
unknown values of the functions
Consider four points in the neighbourhood that are
a distance h from each other
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Finite differences-IV

» With four points we can fit a polynomial of third
order which will be fourth order accurate

« When the first derivative is taken, then this
approximation will drop to third order accuracy

» The same will become second order accurate,
when second derivative is expressed

« First we shall derive second order accurate
formulas by dropping one of the term and compare
the results with the previously obtained ones.




Finite differences -V

Q Third Order Polynomial
Pty +5h) = £ O+ 58 )+ 4 £ 0

L S=D6s=2) _lé(s =2 p F(0)+O0(h*)

2
N

2_S(f2_2f1+fo)

(fs=3f,+3/= f)+Oh")

=fots(fi—fo)+

s7 =357 +2s
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Finite differences -VI
Q The first derivative

1’3'(xo+sh)={(f1—fo)+2S_1(fz—2f1+fo)

2

+¥(f3 ~3f,+3, —fo)+0<h“)}%

4 The second derivative
P (x,+sh) ={(f, =2f + f,) +

_ RE!
6“6 O (f,=3f,+3f,~ f)+O(h )}ﬁ

Finite differences -VII

» To get derivatives at x, the value of s will be 0 and
to get the same at x; x, and x3, the values of s will
be 1, 2 and 3 respectively

» Thus, we can get backward, forward and centered
differences from a single expression just by
changing the value of s.

« First, let us get relations for first derivatives that are
second order accurate at these points

Q The first derivative One sided Difference at x,
can be expressed as

Pl(x, +sh) ={(f1 —f)+ 2s

-1 1 5
B (f2_2f1+fo)}z+0(h )

Finite differences -VIlII
U Putting s = 0, we get

, 1 )
P2<xo>={<f1—f0>—§<f2—2f1+f0>};+0<h )
_ (_f2+4f1_3f0)

2h

+ 0(/’!2) Forward Difference

U4 Puttings = 1, we get
P(x) = {(fl _fo)+%(f2 =2 +fo)}%+0(h2)

:(f2_f0)+0(h2) It has become

2h centered Difference




Finite differences -IX
U Putting s = 2, we get

Pl(x,) {(ﬂ f+3 (- 2f1+fo} +O(R)

(3f2 4f1+f0 +0(/’L ) It has become

2 h Backward Difference

O We can get third order accurate one sided differences
by using 3 terms and puttings = 0 and 3

, 2s—1
Ps(xo+sh)={(f1—fo)+ (i -2f 4 fy)

35 —6s+2
+—

: <f3—3f2+3f1—f0>+0<h4>}%

Forward Difference

Finite differences -X
Pl(x,) {(ﬁ f=5 =20+ £y

+%(f3_3f2+3ﬁ f()} +0(h3)

6h Forward Difference

P(x3 {(ﬁ f0)+;(f2_2fl+f0)

+161<f3—3f2+3ﬁ—f0)}}11+0(h3)

L1 -18f,+9f, —

2
6h Jo) +O(h”)  Backward Difierence

Simple Application-I

2
Y L a® L py=0
dx dx

with y(x=0)=y,, y(x=L)=y,
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Simple Application-II

d’y| i+ 1)-2y(i)+y(i—1)

| h’
dy| _y(i+1)=y(i-1)
x|, 2h

1

The finite difference equation for node I is

yi+1)=2y(i)+ y(i— 1) y(i+1)—y(i—1)

+by(i)=0
2 o v(i)




Simple Application-Ill
Multiplying by h? and collecting coefficients we get

y(i+1)(1+0.5ah )+ y(i)(bh’> =2 )+ y(i—1)(1-0.5ah)=0

1 0 0 0 Y1 Yo
ay ay ay; 0 Yo | _ b,

0 a, ay ay ||y, b,

O 0 0 11y, v,

We can solve for y’s using TDMA

Simple Application-IV
Q Treatment of Neumann Boundary Condition

2
Y

—+by=0
dx Y

) d ,
with y(x=0)=y,, —y(X=L):)’L
dx

U METHOD-1 Extended Domain Method
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Simple Application-V
O Writing FDE at point i
y(i+1)—2y(i)+y(i—1)+a Witl)=y(i—1)
W’ 2h
Q Boundary Condition at point i
yi+D—-y@-1D
2h
= y(i+1)=y(i-1)+2hy, +O(h’) @
Q Substituting Eq. (2) in Eq. (1), we get
Yi=D)+2hy, + O )22y +y(i=1) |

+by(i)=0 @®

+O0(h*) =y,

p There is
h degeneration

i —1)+2hy’ )—v(i-1 of accurac
2= O =y(=D) |, y

2h

Simple Application-V
O However, the solution can be obtained as for the Dirichlet
Boundary Condition as the matrix is tri-diagonal
Q The loss of accuracy near the boundary condition may not
be acceptable
Q This can be overcome by using higher order formulation
at the boundary

O METHOD-2 Higher Order Boundary Method

We have shown that a third order accurate derivative can
be expressed at the boundary as

e
0—0—0—0—0 °
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Simple Application-VI
The above can be rearranged as

6hy, =11y, —18y, , +9y, , =2y,
This formulation will break the tri-diagonal structure

0 M Yo

0 Y2 b,

0 Vil b,

Ai2)i-1 0 V4 b,

0 Q- Qa-nil || Yia b,
0 @y L) 6k
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Simple Application-VII

A tri-diagonal matrix will be obtained by performing two
Gauss operations

First by performing Gauss Operation betweeni-2 and i
rows, a,.;;can be reduced to 0

Then by performing a Gauss operation betweeni-1 and |
rows, we can reduce a5 t0 0

Thus, tri-diagonal structure is restored and can be solved
by TDMA

o000 O

Treatment of Non-Linearity-I

Consider a non-linear Equation
Y +2y*y'=0
When a finite difference equation is written for a node, it

will lead to a non-linear equation due to the presence of
higher order powers

In such cases to get a linear form of the equation, we need
to resort to iterations

The procedure is to assume a y distribution
Linearise and solve fory
Iterate until convergence is reached

The underlying principles used in linearisation are
discussed in next slide

oo

oo OO

Treatment of Non-Linearity-ll

The term y*y’ is linearised as

O ()
Thus, while solving, y? value is always known and becomes
a coefficientin the matrix
Frequently, the methods tend to diverge
To facilitate convergence, under-relaxation is employed

)" =aly)" +a-a)(y)

a is assumed to have a value between 0 and 1

The above suppresses wild variations of y introduced by
the iteration method

Severe non-linearity may force the value of a close to zero

Convergence criterion is similar to what we normally do by
controlling the normalized values between the iterations




