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Comments on Shooting Method

• Shooting methods need iterative solutions

• This may create convergence problems 

but usually it can be circumvented by 
judicial under relaxation

• The advantage is that we can easily get 4th

order solutions

• Non-linearity does not require any special 

treatment

Direct Solutions of BVP

• Finite difference methods can be used to obtain 
solutions that will satisfy boundary conditions 
automatically

• For a non-linear system the equations have to 
be linearized, as otherwise solutions become 
messy

• Step size sensitivity studies have to be 
performed before accepting the solutions as 
satisfactory

Finite difference principles

• In this method, the derivatives are replaced by 
finite differences

• The domain is discretised into finite number of 
regions (say N)

• A system of linear equations is formed for the N 
unknown values of the functions

• Several approaches with varying accuracy are 
possible

• Popular approaches restrict the order of method 
upto second order



2

Finite differences-I

• The finite differences for derivatives can be 
obtained very easily by Newton interpolating 
polynomials derived earlier

• The same can also be obtained by Taylor series

• Since Taylor series derivation is easy for first 
and second derivatives upto second order it is 
illustrated first.
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Finite differences -II
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The above two relations are called the centered approximations

• To get consistent accuracies near boundaries, often 
we need to get forward and backward differences

• This is easily obtained by using Newton’s forward 
interpolating polynomial

• A system of linear equations is formed for the N 
unknown values of the functions

• Consider four points in the neighbourhood that are 
a distance h from each other

Finite differences-III

X0 X1 X2 X3
x

sh h

Finite differences-IV

• With four points we can fit a polynomial of third 
order which will be fourth order accurate

• When the first derivative is taken, then this 
approximation will drop to third order accuracy

• The same will become second order accurate, 
when second derivative is expressed

• First we shall derive second order accurate 
formulas by dropping one of the term and compare 
the results with the previously obtained ones.
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� Third Order Polynomial
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Finite differences -V

� The first derivative
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� The second derivative
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Finite differences -VI

• To get derivatives at x0 the value of s will be 0 and 
to get the same at x1, x2 and x3, the values of s will 
be 1, 2 and 3 respectively

• Thus, we can get backward, forward and centered 
differences from a single expression just by 
changing the value of s.

• First, let us get relations for first derivatives that are 
second order accurate at these points

� The first derivative One sided  Difference at x0 
can be expressed as
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Finite differences -VII

� Putting s = 1, we get
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It has become 

centered Difference
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� Putting s = 0, we get

Forward Difference

Finite differences -VIII
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� Putting s = 2, we get
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It has become 

Backward Difference

Finite differences -IX

�We can get third order accurate one sided differences 
by using 3 terms and putting s = 0 and 3
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Forward Difference

Finite differences -X
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Forward Difference
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Backward Difference

Simple Application-I
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Simple Application-II
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The finite difference equation for node I is
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Simple Application-III

Multiplying by h2 and collecting coefficients we get
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We can solve for y’s using TDMA

� Treatment of Neumann Boundary Condition
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� METHOD-1 Extended Domain Method
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X=L

Simple Application-IV

�Writing FDE at point i
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� Boundary Condition at point i

)(2)1()1(

)(
2

)1()1(

3

2

hOyhiyiy

yhO
h

iyiy

L

L

+′+−=+⇒

′=+
−−+

2

� Substituting Eq. (2) in Eq. (1), we get
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Simple Application-V
� However, the solution can be obtained as for the Dirichlet 

Boundary Condition as the matrix is tri-diagonal

� The loss of accuracy near the boundary condition may not 
be acceptable

� This can be overcome by using higher order formulation 
at the boundary

� METHOD-2  Higher Order Boundary Method

i-3 i-2 i-1 i+1i

X=L

We have shown that a third order accurate derivative can 
be expressed at the boundary as 
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Simple Application-V
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The above can be rearranged as

321 2918116 −−− −+−=′
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This formulation will break the tri-diagonal structure
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Simple Application-VI

� A tri-diagonal matrix will be obtained by performing two 
Gauss operations

� First by performing Gauss Operation between i-2 and i
rows, a(i-3),i can be reduced to 0

� Then by performing a Gauss operation between i-1 and I 
rows, we can reduce a(i-2),i to 0

� Thus, tri-diagonal structure is restored and can be solved 
by TDMA

Simple Application-VII

Treatment of Non-Linearity-I

� Consider a non-linear Equation
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� When a finite difference equation is written for a node, it 
will lead to a non-linear equation due to the presence of 
higher order powers

� In such cases to get a linear form of the equation, we need 
to resort to iterations

� The procedure is to assume a y distribution

� Linearise and solve for y

� Iterate until convergence is reached

� The underlying principles used in linearisation are 
discussed in next slide

� The term         is linearised asyy ′2
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� Thus, while solving, y2 value is always known and becomes 
a coefficient in the matrix

� Frequently, the methods tend to diverge

� To facilitate convergence, under-relaxation is employed
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� α is assumed to have a value between 0 and 1

� The above suppresses wild variations of y introduced by 
the iteration method

� Severe non-linearity may force the value of α close to zero

� Convergence criterion is similar to what we normally do by 
controlling the normalized values between the iterations

Treatment of Non-Linearity-II


