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11:59 PM 1/35 Concept of Characteristics-I 
• Consider a simple PDE called the convection equation 

given by  

• Let the initial condition at t = 0, T(0,x) be F (x) 

• The analytical solution at any given T(t,x) = F (x-ut) 

• This can be verified as follows. On substitution, of the 
solution into the LHS of the PDE we get, 

0
x

T
u

t

T
=

∂

∂
+

∂

∂

x

utx

dx

dF
u

t

utx

dx

dF

utxutx ∂

−∂
+

∂

−∂

−−

)()(

)()(

Hence OK 

1 u = constant 

)()(

)(
utxutx dx

dF
uu

dx

dF

−−

+−

11:59 PM 2/35 

Initial Condition 

Initial condition translates 

with a velocity u 

• To appreciate the solution graphically let us refer to the 
figure shown below 

Concept of Characteristics-II 

After time t1  After time t2  

• Since T = T(x,t), using chain rule assuming continuity of 
T, we can write  
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• Eqs. (1) and (2) can be viewed as two simultaneous 
equations for the partial derivatives as given by 

Concept of Characteristics-III 
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• For unique solutions of Tt and Tx the necessary condition 
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• The state of fluid in t,x plane can be visualised as follows 

x1 

t1 

x2 

t2 

• Eq. (3) when separated and integrated with an initial 
condition of x = x0 at t = t0 will give, 
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• From the previous slide, we have realized that Eq. (2) 
and its integrated form in Eq. (4) describes the path 
along which the discontinuities can propagate 

Concept of Characteristics-V 

• This is called the Characteristic Direction 

• The speed of propagation of the discontinuity is given by 
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• Equations that have real characteristic direction are 
called Hyperbolic Equations (Propagation type) 

• Thus, convection equation is a hyperbolic equation 
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• If instead of Eq. (1), if we would have had the governing 
equation as  
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Concept of Characteristics-VI 
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• By  analogy, the characteristic direction would have been 
by 

Usually denoted by λ 

• Thus,  λ is obtained by solving the equation 

5 0=− AB λ
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• Now we will extend it to a set of first order equations 

Concept of Characteristics-VII 

• The motivation arises from the fact that compressible 
flows are governed by this type of equations 

• We shall start from the most general form. It is convenient 
to work with the matrix notation 
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• If we compare this with our example for one variable, the 
equation is identical except for the fact that the 
coefficients A and B are now matrices and the variable T 
has become a vector f and g 
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Concept of Characteristics-VIII 

[ ] [ ] 0=− ABOr λ

• The characteristic directions in this case  is given by 
solving 
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• To consider a concrete example, we shall take a set 
called the water hammer equation given by the set 

Concept of Characteristics-IX 
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• The above two equations can be recast as 
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[ ] [ ] 0=− AB λ

Concept of Characteristics-X 
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Thus the set is hyperbolic 

• In general, the first order set in TFE are hyperbolic 
equations and we shall look at their solutions later 
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• We can now extend this to second order PDEs. Consider 
a general second order  equation 

0=+++++ FEfDfCfBfAf yxyyxyxx

• Also by chain rule we can write. 
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• In matrix form, we can write 
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Concept of Characteristics-XII 

• For multiple  solutions for fxx, fxy and fyy 
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• The nature of characteristic direction will depend on the 
nature of discriminant 
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04
2 >− ACBFor Roots real, hence Hyperbolic 

042 =− ACBFor Roots real, but repeated Parabolic 

042 <− ACBFor Roots imaginary, hence Elliptic 

• We shall get to more details when we solve them later 
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Consistency-I 

• A finite difference scheme solving a given 
PDE is said to be consistent, if when     and       
are allowed to approach zero, the approximate 
solution will approach the exact solution of 
the PDE 

t∆ x∆

• Consistency of a scheme can be checked by 
application of Taylor series 

• Let us consider an example for illustration 
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Governing Equation: 

 

 

Consider transient conduction in a rod 
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Consistency-II 
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Consistency-III 

• One of the FDM approximation is FTCS 
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Consistency-IV 

• Using Taylor series, we can write the 

following: 
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• Similarly, we can write 
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• The above can be modified as 
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Consistency-V 

• Cancelling       from both sides and then dividing 
both sides by       and finally allowing      and     
approach 0, we get the exact original equation 
hence consistent 
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• Substituting these in our nodal equation, we 

get 
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The equation in the previous slide can be written as 
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Consistency-VI 

The leading truncation error for the approximation 

used is also included. 

Thus, the scheme is said to be First order accurate 

in time and Second order accurate in space.  

For finite values of      and       we are actually solving a 

different PDE. This is called Modified PDE or MPDE  

x∆t∆
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Inconsistency (an example)-I 

• Consider, Convection Equation 
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• FTCS scheme does not work 

• From Taylor Series, we get 
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• Plugging the above in Eq. (6), we get 
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Inconsistency (an example)-II 
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• Hence, as      and      tend to zero, the RHS 

does not go to zero due the inconsistent 

term on the RHS 
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• It is interesting to note that as we reduce     

to zero for a fixed     , the errors build, while 

for a given    , as we reduce    , the errors 

diminish and the method can behave 

consistently 
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Inconsistency (an example)-III 
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•We note that we get an indeterminate quantity, 

  which depends on how the ratio of      and 

  approaches a limit 

    

Inconsistency (Cont’d) 

x∆t∆

• For most propagation equations, we can convert 

higher order time derivatives into space derivatives  
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• Note that in MPDE given above, RHS has only spatial 

derivatives. This will be used later in analysing errors  
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• Thus, Eq. (7) can be written as  

• For example, if we consider convection equation 
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Concepts in Numerical Errors 

• Consider, Transport Equation 
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Initial Condition 

• Causes:  Spurious derivatives introduced due to 

                  truncation error 

• Terminology:  Numerical Diffusion 

          Numerical Dispersion 
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Behaviour of Error 

• Consider 2
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• For problems with boundary values specified, 

error at boundaries will be zero 
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Analytical Solution of Linear PDE 

• Consider                          with 
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Analysis of Error Propagation 

• Consider general purpose MPDE of the error 
equation 
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Error Propagation (Cont’d) 

• Substituting                 in assumed form of Solution 
we get 
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• Note that amplitude growth of error is from      
which is determined by coefficient of even 
derivatives and the phase error is from       which is 
determined by coefficient of odd derivatives 
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Stability Analysis 

• If the magnitude of error amplification is  greater 
than 1, then, error will explode 

• It will be seen that most explicit methods employed 
for obtaining the solution tend to explode, when time 
step is too large. 

• von Neumann stability analysis method is a simple 
and effective tool to identify the constraints on the 
time step 
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von Neumann Stability Analysis 

• Consider an arbitrary error distribution as shown 
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• From Fourier theory, we can decompose the error as 
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von Neumann Analysis (Cont’d) 

• where                                                                      and 
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• Stability would imply that none of the Fourier 
component would grow. 

• It is illustrative to show the procedure with an 
example 
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von Neumann Analysis (Example) 

• Consider                          
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Example (Cont’d) 

• Thus,                       ,                              ,                  mIi
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Example (Cont’d) 
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