11:59 PM	ME 704	1/3
Computational Methods in Thermal and Fluids Engineering		
Classification, Consistency and Numerical Errors		
Kannan Iyer Kiyer@me.iitb.ac.in		
Department of Mechanical Engineering Indian Institute of Technology, Bombay		

${ }^{11: 59}$ PM Concept of Characteristics-II
 3/35

- To appreciate the solution graphically let us refer to the figure shown below

Initial Condition After time t_{1} After time t_{2}

- Since $\mathrm{T}=\mathrm{T}(\mathrm{x}, \mathrm{t})$, using chain rule assuming continuity of T , we can write

$$
\begin{equation*}
\mathrm{dT}=\frac{\partial \mathrm{T}}{\partial \mathrm{t}} \mathrm{dt}+\frac{\partial \mathrm{T}}{\partial \mathrm{x}} \mathrm{dx} \tag{2}
\end{equation*}
$$

${ }^{11: 59}$ PM Concept of Characteristics-I

- Consider a simple PDE called the convection equation given by

$$
\frac{\partial T}{\partial t}+u \frac{\partial T}{\partial x}=0 \quad \text { (1) } \quad u=\text { constant }
$$

- Let the initial condition at $\mathrm{t}=0, \mathrm{~T}(0, \mathrm{x})$ be $\mathrm{F}(\mathrm{x})$
- The analytical solution at any given $\mathrm{T}(\mathrm{t}, \mathrm{x})=\mathrm{F}(\mathrm{x}-\mathrm{ut})$
- This can be verified as follows. On substitution, of the solution into the LHS of the PDE we get,

$$
\begin{aligned}
& \left.\frac{d F}{d x}\right|_{(x-u t)} \frac{\partial(x-u t)}{\partial t}+\left.u \frac{d F}{d x}\right|_{(x-u t)} \frac{\partial(x-u t)}{\partial x} \\
& \left.\quad \frac{d F}{d x}\right|_{(x-u t)}(-u)+\left.u \frac{d F}{d x}\right|_{(x-u t)} \\
& \hline
\end{aligned}
$$

${ }^{11: 59}$ PY Concept of Characteristics-III
4/35

- Eqs. (1) and (2) can be viewed as two simultaneous equations for the partial derivatives as given by

$$
\left[\begin{array}{cc}
1 & u \\
d t & d x
\end{array}\right]\left\{\begin{array}{l}
T_{t} \\
T_{x}
\end{array}\right\}=\left\{\begin{array}{c}
0 \\
d T
\end{array}\right\}
$$

- For unique solutions of T_{t} and T_{x} the necessary condition is

$$
\left|\begin{array}{cc}
1 & u \\
d t & d x
\end{array}\right| \neq 0
$$

- Discontinuities in the slopes are possible, if

$$
\left|\begin{array}{cc}
1 & u \tag{3}\\
d t & d x
\end{array}\right|=0 \quad \text { Or when } \quad \frac{d t}{d x}=\frac{1}{u}
$$

${ }^{11: 59}$ P Concept of Characteristics-IV

- Eq. (3) when separated and integrated with an initial condition of $\mathrm{x}=\mathrm{x}_{0}$ at $\mathrm{t}=\mathrm{t}_{0}$ will give,

$$
\begin{equation*}
x=x_{0}+u\left(t-t_{0}\right) \tag{4}
\end{equation*}
$$

- The state of fluid in t, x plane can be visualised as follows

${ }^{11: 59}$ P Concept of Characteristics-VI

- If instead of Eq. (1), if we would have had the governing equation as

$$
A \frac{\partial T}{\partial t}+B \frac{\partial T}{\partial x}=0
$$

- By analogy, the characteristic direction would have been by

$$
\frac{d x}{d t}=\frac{B}{A}=-\frac{\frac{\partial T}{\partial t} / \frac{\partial T}{\partial x}}{}=\lambda
$$

Usually denoted by λ

- Thus, λ is obtained by solving the equation

$$
B-\lambda A=0
$$

${ }^{11: 59}$ PM Concept of Characteristics-V
6/35

- From the previous slide, we have realized that Eq. (2) and its integrated form in Eq. (4) describes the path along which the discontinuities can propagate
- This is called the Characteristic Direction
- The speed of propagation of the discontinuity is given by

$$
\frac{d x}{d t}=\frac{u}{1}=u
$$

- Equations that have real characteristic direction are called Hyperbolic Equations (Propagation type)
- Thus, convection equation is a hyperbolic equation

11:59 P Concept of Characteristics-VII

- Now we will extend it to a set of first order equations
- The motivation arises from the fact that compressible flows are governed by this type of equations
- We shall start from the most general form. It is convenient to work with the matrix notation

$$
\begin{gathered}
{\left[\begin{array}{ll}
a_{1} & a_{2} \\
b_{1} & b_{2}
\end{array}\right] \frac{\partial}{\partial t}\left\{\begin{array}{l}
f \\
g
\end{array}\right\}+\left[\begin{array}{ll}
a_{3} & a_{4} \\
b_{3} & b_{4}
\end{array}\right] \frac{\partial}{\partial x}\left\{\begin{array}{l}
f \\
g
\end{array}\right\}=\left\{\begin{array}{l}
a_{5} \\
b_{5}
\end{array}\right\}} \\
{[A] \frac{\partial}{\partial t}\left\{\begin{array}{l}
f \\
g
\end{array}\right\}+[B] \frac{\partial}{\partial x}\left\{\begin{array}{l}
f \\
g
\end{array}\right\}=\{S\}}
\end{gathered}
$$

- If we compare this with our example for one variable, the equation is identical except for the fact that the coefficients A and B are now matrices and the variable T has become a vector f and g

${ }^{11: 59}$ P C oncept of Characteristics-VIII

- The characteristic directions in this case is given by solving

$$
\begin{aligned}
& \frac{d x}{d t}=-\frac{\frac{\partial\left\{\begin{array}{l}
f \\
g
\end{array}\right\}}{\partial t}}{\frac{\partial\left\{\begin{array}{l}
f \\
g
\end{array}\right\}}{\partial x}}=\frac{[B]}{[A]}=\lambda \\
& \text { Or }[B]-\lambda[A]=0
\end{aligned}
$$

${ }^{11: 59}$ P Concept of Characteristics-IX ${ }^{10 / 35}$

- To consider a concrete example, we shall take a set called the water hammer equation given by the set

$$
\begin{gathered}
\frac{1}{a^{2}} \frac{\partial p}{\partial t}+\frac{u}{a^{2}} \frac{\partial p}{\partial x}+\rho \frac{\partial u}{\partial x}=0 \\
\rho \frac{\partial u}{\partial t}+\rho u \frac{\partial u}{\partial x}+\frac{\partial p}{\partial x}=0
\end{gathered}
$$

Mass Balance
Momentum Balance

- The above two equations can be recast as
$\left[\begin{array}{cc}0 & \frac{1}{a^{2}} \\ \rho & 0\end{array}\right] \frac{\partial}{\partial t}\left\{\begin{array}{l}u \\ p\end{array}\right\}+\left[\begin{array}{cc}\rho & \frac{u}{a^{2}} \\ \rho u & 1\end{array}\right] \frac{\partial}{\partial x}\left\{\begin{array}{l}u \\ p\end{array}\right\}=\left\{\begin{array}{l}0 \\ 0\end{array}\right\}$

${ }^{11: 59}{ }^{\text {P }}$ Concept of Characteristics-XI ${ }^{12 / 35}$

- We can now extend this to second order PDEs. Consider a general second order equation

$$
A f_{x x}+B f_{x y}+C f_{y y}+D f_{x}+E f_{y}+F=0
$$

- Also by chain rule we can write.

$$
\begin{aligned}
& d\left(f_{x}\right)=f_{x x} d x+f_{x y} d y \\
& d\left(f_{y}\right)=f_{y x} d x+f_{y y} d y
\end{aligned}
$$

- In matrix form, we can write

$$
\left[\begin{array}{ccc}
A & B & C \\
d x & d y & 0 \\
0 & d x & d y
\end{array}\right]\left\{\begin{array}{l}
f_{x x} \\
f_{x y} \\
f_{y y}
\end{array}\right\}=\left\{\begin{array}{c}
-D f_{x}-E f_{y}-F \\
d\left(f_{x}\right) \\
d\left(f_{y}\right)
\end{array}\right\}
$$

${ }^{11: 59}$ P ${ }^{\text {Concept }}$ of Characteristics-XII ${ }^{13 / 35}$

- For multiple solutions for $f_{x x}, f_{x y}$ and $f_{y y}$

$$
\begin{aligned}
&\left|\begin{array}{ccc}
A & B & C \\
d x & d y & 0 \\
0 & d x & d y
\end{array}\right|=0 \\
& \Rightarrow A d y^{2}-B d x d y+C d x^{2}=0 \\
& \Rightarrow A\left(\frac{d y}{d x}\right)^{2}-B \frac{d y}{d x}+C=0 \\
& \Rightarrow \frac{d y}{d x}=\frac{B \pm \sqrt{B^{2}-4 A C}}{2 A}
\end{aligned}
$$

- The nature of characteristic direction will depend on the nature of discriminant

11:59 PM	Consistency-I

- A finite difference scheme solving a given PDE is said to be consistent, if when Δt and Δx are allowed to approach zero, the approximate solution will approach the exact solution of the PDE
- Consistency of a scheme can be checked by application of Taylor series
- Let us consider an example for illustration

${ }^{11: 59}$ P Concept of Characteristics-XIII ${ }^{14 / 35}$

For $B^{2}-4 A C>0$ Roots real, hence Hyperbolic
For $B^{2}-4 A C=0$ Roots real, but repeated Parabolic
For $B^{2}-4 A C<0$ Roots imaginary, hence Elliptic

- We shall get to more details when we solve them later

Consistency-III

- One of the FDM approximation is FTCS

$$
\left.\frac{\partial T}{\partial \mathrm{t}}\right|_{\mathrm{i}} ^{\mathrm{n}}=\left.\frac{\mathrm{T}_{\mathrm{i}}^{\mathrm{n}+1}-\mathrm{T}_{\mathrm{i}}^{\mathrm{n}}}{\Delta \mathrm{t}} \quad \frac{\partial^{2} \mathrm{~T}}{\partial \mathrm{x}^{2}}\right|_{\mathrm{i}} ^{\mathrm{n}}=\frac{\mathrm{T}_{\mathrm{i}+1}^{\mathrm{n}}-2 \mathrm{~T}_{\mathrm{i}}^{\mathrm{n}}+\mathrm{T}_{\mathrm{i}-1}^{\mathrm{n}}}{\Delta \mathrm{x}^{2}}
$$

- This leads to the nodal equation

$$
\mathrm{T}_{\mathrm{i}}^{\mathrm{n}+1}=\mathrm{T}_{\mathrm{i}}^{\mathrm{n}}+\frac{\alpha \Delta \mathrm{t}}{\Delta \mathrm{x}^{2}}\left(\mathrm{~T}_{\mathrm{i}+1}^{\mathrm{n}}-2 \mathrm{~T}_{\mathrm{i}}^{\mathrm{n}}+\mathrm{T}_{\mathrm{i}-1}^{\mathrm{n}}\right)
$$

- Cancelling $T_{i}{ }^{n}$ from both sides and then dividing both sides by $\Delta \mathrm{t}$ and finally allowing $\Delta \mathrm{t}$ and $\Delta \mathrm{x}$ approach 0 , we get the exact original equation hence consistent

Consistency-IV

- Using Taylor series, we can write the following:

$$
T_{i}^{n+1}=T_{i}^{n}+\left.\frac{\partial T}{\partial t}\right|_{i} ^{n} \Delta t+\left.\frac{\partial^{2} T}{\partial t^{2}}\right|_{i} ^{n} \frac{\Delta t^{2}}{2!}+\left.\frac{\partial^{3} T}{\partial t^{3}}\right|_{i} ^{n} \frac{\Delta t^{3}}{3!}+\text { HOT }
$$

- Similarly, we can write

$$
\mathrm{T}_{\mathrm{i} \pm 1}^{\mathrm{n}}=\mathrm{T}_{\mathrm{i}}^{\mathrm{n}} \pm\left.\frac{\partial \mathrm{T}}{\partial \mathrm{x}}\right|_{\mathrm{i}} ^{\mathrm{n}} \Delta \mathrm{x}+\left.\frac{\partial^{2} \mathrm{~T}}{\partial \mathrm{x}^{2}}\right|_{\mathrm{i}} ^{\mathrm{n}} \frac{\Delta \mathrm{x}^{2}}{2!} \pm\left.\frac{\partial^{3} \mathrm{~T}}{\partial \mathrm{x}^{3}}\right|_{\mathrm{i}} ^{\mathrm{n}} \frac{\Delta \mathrm{x}^{3}}{3!}+\text { HOT }
$$

- The above can be modified as

$$
\frac{\mathrm{T}_{\mathrm{i}+1}^{\mathrm{n}}+\mathrm{T}_{\mathrm{i}-1}^{\mathrm{n}}-2 \mathrm{~T}_{\mathrm{i}}^{\mathrm{n}}}{\Delta \mathrm{x}^{2}}=\left.2 \frac{\partial^{2} \mathrm{~T}}{\partial \mathrm{x}^{2}}\right|_{\mathrm{i}} ^{\mathrm{n}} \frac{1}{2!}+\left.2 \frac{\partial^{4} \mathrm{~T}}{\partial \mathrm{x}^{4}}\right|_{\mathrm{i}} ^{\mathrm{n}} \frac{\Delta \mathrm{x}^{2}}{4!}+\text { HOT }
$$

11:59 PM

20/35

Consistency-VI

For finite values of Δt and Δx we are actually solving a different PDE. This is called Modified PDE or MPDE

The equation in the previous slide can be written as

$$
\frac{\partial \mathrm{T}}{\partial \mathrm{t}}+\mathrm{O}(\Delta \mathrm{t})=\alpha \frac{\partial^{2} \mathrm{~T}}{\partial \mathrm{x}^{2}}+\mathrm{O}\left(\Delta \mathrm{x}^{2}\right)
$$

The leading truncation error for the approximation used is also included.
Thus, the scheme is said to be First order accurate in time and Second order accurate in space.

$11: 59 \mathrm{PM}$	Inconsistency (an example)-I	$21 / 35$

- Consider, Convection Equation
- FTCS scheme does not work
$\frac{\partial T}{\partial t}+u \frac{\partial T}{\partial x}=0$
- Modelling by Lax Scheme
$\left.\frac{\partial T}{\partial \mathrm{t}}\right|_{\mathrm{i}} ^{\mathrm{n}}=\frac{\mathrm{T}_{\mathrm{i}}^{\mathrm{n}+1}-0.5\left(\mathrm{~T}_{\mathrm{i}+1}^{\mathrm{n}}+\mathrm{T}_{\mathrm{i}-1}^{\mathrm{n}}\right)}{\Delta \mathrm{t}}$

$$
\left.\frac{\partial T}{\partial x}\right|_{i} ^{n}=\frac{T_{i+1}^{n}-T_{i-1}^{n}}{2 \Delta x}
$$

- Nodal Equation becomes

$$
\begin{align*}
& \frac{T_{i}^{n+1}-0.5\left(T_{i+1}^{n}+T_{i-1}^{n}\right)}{\Delta t}+\frac{u\left(T_{i+1}^{n}-T_{i-1}^{n}\right)}{2 \Delta x}=0 \\
& T_{i}^{n+1}=0.5\left(T_{i+1}^{n}+T_{i-1}^{n}\right)-\frac{u \Delta t}{2 \Delta x}\left(T_{i+1}^{n}-T_{i-1}^{n}\right) \tag{6}
\end{align*}
$$

11:59 PM Inconsistency (an example)-II

- From Taylor Series, we get
$T_{i \pm 1}^{n}=T_{i}^{n} \pm\left.\frac{\partial T}{\partial x}\right|_{i} ^{n} \Delta x+\left.\frac{\partial^{2} T}{\partial x^{2}}\right|_{i} ^{n} \frac{\Delta x^{2}}{2!} \pm\left.\frac{\partial^{3} T}{\partial x^{3}}\right|_{i} ^{n} \frac{\Delta x^{3}}{3!}+$ HOT
$\Rightarrow T_{i+1}^{n}-T_{i-1}^{n}=\left.2 \frac{\partial T}{\partial x}\right|_{i} ^{n} \Delta x+\left.2 \frac{\partial^{3} T}{\partial x^{3}}\right|_{i} ^{n} \frac{\Delta x^{3}}{3!}+$ HOT
And $T_{i+1}^{n}+T_{i-1}^{n}=2 T_{i}^{n}+\left.2 \frac{\partial^{2} T}{\partial x^{2}}\right|_{i} ^{n} \frac{\Delta x^{2}}{2!}+O\left(\Delta x^{4}\right)$
- Plugging the above in Eq. (6), we get
$T_{i}^{n}+\left.T_{t}\right|_{i} ^{n} \Delta t+\left.T_{t t}\right|_{i} ^{n} \frac{\Delta t^{2}}{2}+O\left(\Delta t^{3}\right)=\bar{X}_{i}^{n^{\prime \prime}}+\left.T_{x x}\right|_{i} ^{n} \frac{\Delta x^{2}}{2}-\frac{u \Delta t}{\Delta x}\left(\left.T_{x}\right|_{i} ^{n} \Delta x+O\left(\Delta x^{3}\right)\right)$

24/35

Inconsistency (Cont'd)

-We note that we get an indeterminate quantity, which depends on how the ratio of Δt and Δx approaches a limit

- For most propagation equations, we can convert higher order time derivatives into space derivatives
- For example, if we consider convection equation

$$
\mathrm{T}_{\mathrm{tt}}=\left(\mathrm{T}_{\mathrm{t}}\right)_{\mathrm{t}}=\left(-\mathrm{uT} \mathrm{~T}_{\mathrm{x}}\right)_{\mathrm{t}}=\left(-\mathrm{uT} \mathrm{~T}_{\mathrm{t}}\right)_{\mathrm{x}}=\left(-\mathrm{u}\left(-\mathrm{uT} \mathrm{~T}_{\mathrm{x}}\right)\right)_{\mathrm{x}}=\mathrm{u}^{2} \mathrm{~T}_{\mathrm{xx}}
$$

- Thus, Eq. (7) can be written as

$$
\mathrm{T}_{\mathrm{t}}+\mathrm{uT}_{\mathrm{x}}=0.5 \frac{\Delta \mathrm{x}^{2}}{\Delta \mathrm{t}} \mathrm{~T}_{\mathrm{xx}}-0.5 \Delta \mathrm{t} \mathrm{u}^{2} \mathrm{~T}_{\mathrm{xx}}+\text { HOT }
$$

- Note that in MPDE given above, RHS has only spatial derivatives. This will be used later in analysing errors

11:59 PM
 25/35

Concepts in Numerical Errors

- Consider, Transport Equation $\frac{\partial \mathrm{T}}{\partial \mathrm{t}}+\mathrm{u} \frac{\partial \mathrm{T}}{\partial \mathrm{x}}=\alpha \frac{\partial^{2} \mathrm{~T}}{\partial \mathrm{x}^{2}}$

- Causes: Spurious derivatives introduced due to truncation error
- Terminology: Numerical Diffusion

Numerical Dispersion

Behaviour of Error

- Consider $\frac{\partial T}{\partial t}=\alpha \frac{\partial^{2} T}{\partial x^{2}}$
- Let error ε be defined as $\varepsilon=\mathrm{T}_{\text {numerical }}-\overline{\mathrm{T}}_{\text {exact }}$
- Numerical Solution actually solves for

$$
\begin{aligned}
& \frac{\partial(\overline{\mathrm{T}}+\varepsilon)}{\partial \mathrm{t}}=\alpha \frac{\partial^{2}(\overline{\mathrm{~T}}+\varepsilon)}{\partial \mathrm{x}^{2}} \\
\Rightarrow & \frac{\partial(\overline{\mathrm{~T}})}{\partial \mathrm{t}}+\frac{\partial(\varepsilon)}{\partial \mathrm{t}}=\alpha\left(\frac{\partial^{2}\left(\overline{x^{\prime}}\right)}{\partial \mathrm{x}^{2}}+\frac{\partial^{2}(\varepsilon)}{\partial \mathrm{x}^{2}}\right)
\end{aligned}
$$

- The above implies that the error equation is identical to the original governing equation
- For problems with boundary values specified, error at boundaries will be zero

11:59 PM Analytical Solution of Linear PDE

27/35

- Consider $\frac{\partial \mathrm{T}}{\partial \mathrm{t}}=\alpha \frac{\partial^{2} \mathrm{~T}}{\partial \mathrm{x}^{2}}$ with $\mathrm{T}(0, \mathrm{x})=\operatorname{Sin}\left(\frac{\pi \mathrm{x}}{\mathrm{L}}\right)$ and $\mathrm{T}(\mathrm{t}, 0)=\mathrm{T}(\mathrm{t}, \mathrm{L})=0$
- Let Solution be of the form $T(t, x)=\hat{\varepsilon} e^{s t} e^{i k x}$
$\Rightarrow T_{t}=\hat{\varepsilon} s e^{s t} e^{i k x}=s T \quad T_{x x}=\hat{\varepsilon}(i k)^{2} e^{s t} e^{i k x}=-k^{2} T$
- Substituting these in Gov. Eq., we get $s=-\alpha k^{2}$
- Thus, $T(t, x)=\hat{\varepsilon} e^{-\alpha k^{2} t} e^{i k x}$
- From initial condition we get, $T(0, x)=\hat{\varepsilon} e^{i k x}=\operatorname{Sin}\left(\frac{\pi x}{L}\right)$
- By comparison, we can state that: $\hat{\varepsilon}=1, \mathrm{k}=\left(\frac{\pi}{\mathrm{L}}\right)$ and only imaginary part to be used
- Thus the solution is $T(t, x)=e^{-\alpha\left(\frac{\pi}{L}\right)^{2}} \operatorname{t} \operatorname{Sin}\left(\frac{\pi x}{L}\right)$

Analysis of Error Propagation

- Consider general purpose MPDE of the error equation

$$
\frac{\partial(\varepsilon)}{\partial t}=\sum_{m=1}^{\infty} A_{2 m} \frac{\partial^{2 m}(\varepsilon)}{\partial x^{2 m}}+\sum_{m=0}^{\infty} A_{2 m+1} \frac{\partial^{2 m+1}(\varepsilon)}{\partial x^{2 m+1}}
$$

- Substituting $\varepsilon=\hat{\varepsilon} \quad \mathrm{e}^{\text {st }} \mathrm{e}^{\mathrm{ikx}}$ we get

$$
\mathrm{s} \varepsilon^{\prime}=\varepsilon \sum_{\mathrm{m}=1}^{\infty} \mathrm{A}_{2 \mathrm{~m}} \mathrm{k}^{2 \mathrm{~m}}(-1)^{\mathrm{m}}+\varepsilon^{n} \sum_{\mathrm{m}=0}^{\infty} \mathrm{A}_{2 \mathrm{~m}+1} \mathrm{k}^{2 \mathrm{~m}+1}(-1)^{\mathrm{m}} \mathrm{i}
$$

- In general, writing $s=\sigma+i \omega$ we get
$\sigma=\sum_{m=1}^{\infty} A_{2 m} k^{2 m}(-1)^{m} \quad$ and $\quad \omega=\sum_{m=0}^{\infty} A_{2 m+1} k^{2 m+1}(-1)^{m}$

11:59 PM 29/35
 Error Propagation (Cont'd)

- Substituting σ and ω in assumed form of Solution we get $\varepsilon(\mathrm{t}, \mathrm{x})=\hat{\varepsilon} \mathrm{e}^{\sigma \mathrm{t}} \mathrm{e}^{\mathrm{i}(\mathrm{kx}+\omega t)}$
$\Longrightarrow \varepsilon(\mathrm{t}+\Delta \mathrm{t}, \mathrm{x})=\hat{\varepsilon} \mathrm{e}^{\sigma(\mathrm{t}+\Delta \mathrm{t})} \mathrm{e}^{\mathrm{i}(\mathrm{kx}+\omega(\mathrm{t}+\Delta \mathrm{t}))}$
- Defining error amplification, G as,

$$
\begin{array}{r}
\mathrm{G}=\frac{\varepsilon(\mathrm{t}+\Delta \mathrm{t}, \mathrm{x})}{\varepsilon(\mathrm{t}, \mathrm{x})}=\mathrm{e}^{\sigma \Delta \mathrm{t}} \mathrm{e}^{\mathrm{i} \omega \Delta \mathrm{t})} \\
\Rightarrow|\mathrm{G}|=\mathrm{e}^{\sigma \Delta \mathrm{t}} \text { and } \quad \phi=\omega \Delta \mathrm{t}
\end{array}
$$

- Note that amplitude growth of error is from σ which is determined by coefficient of even derivatives and the phase error is from ω which is determined by coefficient of odd derivatives

Stability Analysis

- If the magnitude of error amplification is greater than 1, then, error will explode
- It will be seen that most explicit methods employed for obtaining the solution tend to explode, when time step is too large.
- von Neumann stability analysis method is a simple and effective tool to identify the constraints on the time step

11:59 PM \quad von Neumann Stability Analysis

- Consider an arbitrary error distribution as shown

$$
\begin{aligned}
& \text { - From Fourier theory, we can decompose the error as } \\
& \qquad \varepsilon(x)=\frac{a_{0}}{2}+\sum_{m=1}^{\infty} a_{m} \cos \left(\frac{m \pi x}{L}\right)+\sum_{m=1}^{\infty} b_{m} \sin \left(\frac{m \pi x}{L}\right)
\end{aligned}
$$

- The above can be rewritten as

$$
=\frac{\mathrm{a}_{0}}{2}+\sum_{\mathrm{m}=1}^{\infty} \mathrm{c}_{\mathrm{m}} \mathrm{e}^{\mathrm{Imax}}+\sum_{\mathrm{m}=1}^{\infty} \mathrm{c}_{-\mathrm{m}} \mathrm{e}^{-\mathrm{I} \frac{\max }{L}}
$$

31/35

11:59 PM
32/35
von Neumann Analysis (Cont'd)

- where $\mathrm{c}_{\mathrm{m}}=\frac{\mathrm{a}_{\mathrm{m}}-\mathrm{Ib}}{2},+\mathrm{c}_{-\mathrm{m}}=\frac{\mathrm{a}_{\mathrm{m}}+\mathrm{Ib}}{2}$ and $\mathrm{I}=\sqrt{-1}$
- The equation can be compactly written as

$$
\varepsilon(x)=\sum_{m=-\infty}^{\infty} c_{m} e^{I \frac{m \pi x}{L}}
$$

- Stability would imply that none of the Fourier component would grow.
- It is illustrative to show the procedure with an example

11:59 PM 33/35 von Neumann Analysis (Example)

- Consider $\frac{\partial T}{\partial t}=\alpha \frac{\partial^{2} T}{\partial x^{2}} \Longrightarrow \frac{\partial \varepsilon}{\partial t}=\alpha \frac{\partial^{2} \varepsilon}{\partial x^{2}}$
- Let the finite difference equation be

$$
\varepsilon_{i}^{n+1}=\varepsilon_{i}^{n}+D\left(\varepsilon_{i+1}^{n}-2 \varepsilon_{i}^{n}+\varepsilon_{i-1}^{n}\right) \text { where } \quad D=\frac{\alpha \Delta t}{\Delta x^{2}}
$$

- Consider a Fourier component $\varepsilon_{i}^{n}=c_{m} e^{\text {Im }{ }^{\text {max }}}$
- Since $x=i \Delta x, \varepsilon_{i}^{n}=c_{m} e^{i \frac{i m a n a x}{L}}=c_{m} e^{\text {Ii } \theta_{m}}$ where $\theta_{\mathrm{m}}=\frac{\mathrm{m} \pi \Delta x}{\mathrm{~L}}$

Example (Cont'd)

- Thus, $\varepsilon_{i}^{n}=c_{m} e^{\mathrm{Ii} \theta_{\mathrm{m}}}, \varepsilon_{i \pm 1}^{\mathrm{n}}=\mathrm{c}_{\mathrm{m}} \mathrm{e}^{\mathrm{I}(\pm 1) \theta_{\mathrm{m}}}, \varepsilon_{i}^{\mathrm{n}+1}=G \varepsilon_{i}^{\mathrm{n}}$
- Substitution of the above in the finite difference Eq.,

$$
\mathrm{Gc}_{\mathrm{m}} \mathrm{e}^{\mathrm{Ti} \theta_{\mathrm{m}}}=\mathrm{c}_{\mathrm{m}} \mathrm{e}^{\mathrm{Ti} \mathrm{\theta} \theta_{\mathrm{m}}}+\mathrm{Dc}_{\mathrm{m}} \mathrm{e}^{\mathrm{i} \mathrm{\theta} \theta_{\mathrm{m}}^{*}}\left(\mathrm{e}^{\theta_{\mathrm{m}}}-2+\mathrm{e}^{-\theta_{\mathrm{m}}}\right)
$$

$\Rightarrow \mathrm{G}=1+\mathrm{D}\left(2 \cos \theta_{\mathrm{m}}-2\right)=1+2 \mathrm{D}\left(\cos \theta_{\mathrm{m}}-1\right)$

- For stability $|\mathrm{G}| \leq 1 \Rightarrow-1 \leq \mathrm{G} \leq 1$

Example (Cont' d)	
$\mathrm{G} \leq 1$	$-1 \leq \mathrm{G}$
$1+2 \mathrm{DM}\left(\cos \theta_{\mathrm{m}}-1\right) \leq 1$	$-1 \leq 1+2 \mathrm{D}\left(\cos \theta_{\mathrm{m}}-1\right)$
$2 \mathrm{D}\left(\cos \theta_{\mathrm{m}}-1\right) \leq 0$	$-2 \leq 2 \mathrm{D}\left(\cos \theta_{\mathrm{m}}-1\right)$
$\mathrm{D} \geq 0$	$\mathrm{D} \leq \frac{1}{\left(1-\cos \theta_{\mathrm{m}}\right)}$
smallest value $\Rightarrow \mathrm{D} \leq 0.5$	
- Thus for stability there is an upper bound on $\Delta \mathrm{t}$	

