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Computational Methods in Thermal and
Fluids Engineering

Classification, Consistency and
Numerical Errors

"S9P Concept of Characteristics-1 ~ #*°

* Consider a simple PDE called the convection equation
given by
oT oT
tut—=0
ot ox @
* Let the initial condition at t = 0, T(0,x) be F (x)
* The analytical solution at any given T(t,x) = F (x-ut)

e This can be verified as follows. On substitution, of the
solution into the LHS of the PDE we get,

u = constant

dF | d(x—ur)  dF | d(x—ut)
dx |(xfut) at dx |(xfut) ax
di (—u)+u dr Hence OK
dx (x—ut) 29 (x—ut)

"159PMConcept of Characteristics-11 ~ ¥*°

* To appreciate the solution graphically let us refer to the
figure shown below

Initial condition translates

M with a velocity u

utY

Initial Condition After time t; After time t,

* Since T = T(x,t), using chain rule assuming continuity of
T, we can write
oT oT

dT = a_tdt + gdx @

""59P¥oncept of Characteristics-III  **°

* Egs. (1) and (2) can be viewed as two simultaneous
equations for the partial derivatives as given by

1 u ([T, | |0
dt dx ||T, [  |dr
* For unique solutions of T, and T, the necessary condition

18

1 u

dt dx

£0

* Discontinuities in the slopes are possible, if

1 u
dt dx

=0 Or when d—t:L ©)
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59" oncept of Characteristics-IV ~ *°

* Eqg. (3) when separated and integrated with an initial
condition of x = x, at t = t, will give,

x=x,+tu(t—1t,) @

* The state of fluid in t,x plane can be visualised as follows

"159"MConcept of Characteristics-V %

* From the previous slide, we have realized that Eq. (2)
and its integrated form in Eq. (4) describes the path
along which the discontinuities can propagate

* This is called the Characteristic Direction
* The speed of propagation of the discontinuity is given by

dx u

a1
* Equations that have real characteristic direction are
called Hyperbolic Equations (Propagation type)

» Thus, convection equation is a hyperbolic equation

59" oncept of Characteristics-VI ~ "*°

* If instead of Eq. (1), if we would have had the governing
equation as
oT oT

A—+B—=0
ot ox
* By analogy, the characteristic direction would have been
by
oT
fl_)tc = i - _ ot oT = A Usually denoted by A
ox

* Thus, A is obtained by solving the equation

B-1A=0 )

"S9P oncept of Characteristics-VII  %*°

* Now we will extend it to a set of first order equations
* The motivation arises from the fact that compressible
flows are governed by this type of equations

* We shall start from the most general form. It is convenient
to work with the matrix notation

ooele{e e w2l
SEHEUESHE:

* If we compare this with our example for one variable, the
equation is identical except for the fact that the
coefficients A and B are now matrices and the variable T
has become a vector fand g
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159 ¢ oncept of Characteristics-VIII

» The characteristic directions in this case is given by
solving

or [B]-1[A]=0

9/35

59" oncept of Characteristics-IX '%%°

* To consider a concrete example, we shall take a set
called the water hammer equation given by the set

1 dp  u dp du
— L+ — L4 p—=0
22 91 4% ox P 3x Mass Balance

du du B_p =0 Momentum Balance

—+ pu—+
P TP ey T ax

» The above two equations can be recast as

iy B AR

"159"MConcept of Characteristics-X

[B]- A[a]=0

2
— P e =0 = p=p M
plu—-2) 1 a

> Wu-1)=%ta = ﬁzuiazfl—x
t
Thus the set is hyperbolic
* In general, the first order set in TFE are hyperbolic
equations and we shall look at their solutions later

11/35

59" oncept of Characteristics-XI '%%°

¢ We can now extend this to second order PDEs. Consider
a general second order equation

Af +Bf ,+Cf , +Df +Ef +F=0
* Also by chain rule we can write.
d(f.)= fudx + fdy

d(f,)= fydx + f,dy
¢ In matrix form, we can write

A B C||[f, -Df, - Ef - F
de dy 0 |\ f, = d(f,)
0 dx dy||f, d (fy)
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"S9P oncept of Characteristics-XII '%°

* For multiple solutions for f,, f,, and f,,

A B C
dx dy 0|=0
0 dx dy
= Ady > — Bdxdy + Cdx > =0
2
= A[d—yj 8P Lo
dx dx
dy B*B?-4AC
= — =
dx 2A

* The nature of characteristic direction will depend on the
nature of discriminant

59 ¢ oncept of Characteristics-XIIT '*°

For B’ —4AC >0 Roots real, hence Hyperbolic

For B’ —4AC =0 Roots real, but repeated Parabolic
For B’ —4AC <0 Roots imaginary, hence Elliptic

* We shall get to more details when we solve them later

11:59 PM . 15/35
Consistency-1

* A finite difference scheme solving a given
PDE is said to be consistent, if whenAt and Ax
are allowed to approach zero, the approximate
solution will approach the exact solution of
the PDE

* Consistency of a scheme can be checked by
application of Taylor series

* Let us consider an example for illustration

11:59 PM . 16/35
Consistency-11

Consider transient conduction in a rod
oT  9°T

Governing Equation: 2% _ 9 °
ot dx’

Physical Domain:

1 -1 i i+l N

Computational

n+l

Domain: T )

™

1
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11:59 PM 17/35
Consistency-II1

* One of the FDM approximation is FTCS

or' _TM-T' 9’1 T, -2T 4Ty

T ox*|, AX?

1

* This leads to the nodal equation

oAt
Ax?

T =T + (T}, -2T"+T)

i+l

11:59 PM 18/35
Consistency-1V

* Using Taylor series, we can write the

11:59 PM 19/35

Consistency-V

* Substituting these in our nodal equation, we

get
oT " °T| At? ,
T." + —| At+ + O (At”) =
booat|, ot? | 2! (ae)
2m It 4 ? 2
T + aAt| — e ];| AX” L 0(AxY)
x| Tax*| 4

* Cancelling 7," from both sides and then dividing
both sides by At and finally allowing At and Ax
approach 0, we get the exact original equation
hence consistent

following:
n 2m |® 2 3 P 3
o=+ 9L At+af| At +af AU | Hor
ot | atr | 21 " att| 3!
* Similarly, we can write
n 2 n 2 3 ? 3
T2 =1+ 9T Ax+af Ax iaf AX_ | HOT
B X |; ox| 2! ox’| 3!
¢ The above can be modified as
n n n 2 n 4 n 2
TM+THZ 21" _,3 12“ 1.,0 14‘ Ax® | por
AX ox , 2! ox o4l
11:59 PM 20/35

Consistency-VI

For finite values of At and Ax we are actually solving a
different PDE. This is called Modified PDE or MPDE

The equation in the previous slide can be written as

JT 9°T
—+0(At) =«
ot G ox*
The leading truncation error for the approximation

used is also included.

+0(Ax?)

Thus, the scheme is said to be First order accurate
in time and Second order accurate in space.

9/19/2011



11:59 PM . 21/35
Inconsistency (an example)-I

* Consider, Convection Equation 9T N oT _ 0

11:59 PM . 22/35
Inconsistency (an example)-11

* From Taylor Series, we get

* FTCS scheme does not work Jt ' Jx
* Modelling by Lax Scheme
o' T -0.5(T, +T) e _ T =T
ot At ox |, 2Ax
* Nodal Equation becomes
1051 + 1) w@ =T _
At 2Ax
T =05 + T -2 -1y @
2Ax
11:59 PM 23/35

Inconsistency (an example)-111

n sz

i 2A1

e Hence, as At and Ax tend to zero, the RHS
does not go to zero due the inconsistent
term on the RHS

* It is interesting to note that as we reduce At
to zero for a fixed Ax, the errors build, while
for a given As as we reduce Ax, the errors
diminish and the method can behave
consistently

=T,|" +0(A)+ u(TX T+ O(sz))z T,

n 2 ° 2 3 |” 3
T =1+ 9T A4 d T2| ax” 9 T3| AX” | HOT
: x| ax*| 20 T ax’| 3!
n 3 " 3
=71 -1, =290 Ax+2a]; AX_ | Hor
x|, dx” | 3!
270 |" 2
And T +T! =2T'+ 2a_€ A L oaxY)
dx~| 2!
* Plugging the above in Eq. (6), we get @
n nAtz nA)Cz ult n
T'4+T| At+T,|' —+O0\AL )=F"+T,|' — ——I\T | Ax+ O(AX’
/lz 1 2 ( )/?L(/ xx|; 2 A)C(XL ( ))
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Inconsistency (Cont’d)

*We note that we get an indeterminate quantity,
which depends on how the ratio of At and Ax
approaches a limit

» For most propagation equations, we can convert
higher order time derivatives into space derivatives

* For example, if we consider convection equation
T, =(T), = (-uT), = (—uT,), =(~u(-vT)), =v’T,

* Thus, Eq. (7) can be written as

A 2
T, +uT, =05~
At

T, —0.5At u’T, +HOT

* Note that in MPDE given above, RHS has only spatial
derivatives. This will be used later in analysing errors
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11:59 PM 25/35
Concepts in Numerical Errors

2
* Consider, Transport Equation a—T+ u T =a J 1;
ot ox ox

Initial Condition Phase Error

Analytical
Numerical
—"

} Amplitude Error

e Causes: Spurious derivatives introduced due to
truncation error
e Terminology: Numerical Diffusion

Numerical Dispersion
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Behaviour of Error

9°T
ox?’
e Let error € be defined as =T

numerical  “Texact

e Consider 6_T= o
dt

* Numerical Solution actually solves for
a(T+e) (T +¢)
=Q 2

ox
T/Y 3(e) _ (32(7‘)+az(e)j
/9/ ot Ax’ ox’

t
The above implies that the error equation is
identical to the original governing equation
For problems with boundary values specified,
error at boundaries will be zero

11:59 PM . . . 27/35
Analytical Solution of Linear PDE
2
* Consider CER o 0 1; with T (0,x) = Sin (%)
dt ox

and T(,0)=T({L)=0
* Let Solution be of the form T (t,x) =£€ e%e™
= T, =8s e"e™ =sT T,k =E&(k)e"e™ =-k°T
* Substituting these in Gov. Eq., we get ¢ = —qgk?
 Thus, T(t,x)=ge *'e™
« From initial condition we get, T(0,x)=£&e™ = Sin (%)

* By comparison, we can state that: €=1, k= (%)
and only imaginary part to be used

e Thus the solution is T(t,x) = e‘“(%)Z‘Sin (=)
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Analysis of Error Propagation
* Consider general purpose MPDE of the error
equation

a(e) aZm(e) 82m+1(e)
z 2m ox 2m +ZA2m+1 ox 2m+1

. Substltutmg e =§ ete™ we get

se'= €3 A, kPm (=D +€) AL, KT (=DM
m=1 m=0

* In general, writing s = ¢ + i@ Wwe get

=) A, k(D" and ©=) A,  k"(E=D"

m=1 m=0
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11:59 PM 29/35
Error Propagation (Cont’d)
¢ Substituting ¢ and ® in assumed form of Solution
we get E(t,X) — é thei(kx+(,0t)
= 8(t+At X) — é ec(t+At)ei(kx+m(t+At))
* Defining error amplification, G as,
_ e(t+ At,x) — ¢ OAgi0AD)
e(t,x)

—_ |G| =e%tand ¢ = At

* Note that amplitude growth of error is from ¢
which is determined by coefficient of even
derivatives and the phase error is from ® which is
determined by coefficient of odd derivatives
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Stability Analysis

* If the magnitude of error amplification is greater
than 1, then, error will explode

* It will be seen that most explicit methods employed
for obtaining the solution tend to explode, when time
step is too large.

* von Neumann stability analysis method is a simple
and effective tool to identify the constraints on the
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von Neumann Stability Analysis

MW

L
* Consider an arbitrary error distribution as shown

* From Fourier theory, we can decompose the error as

e(x) = a7°+ i a, cos (mz)+ i b, sin (2zx)
m=1

m=1

¢ The above can be rewritten as

time step
11:59 PM 32/35
von Neumann Analysis (Cont’d)
e where Cm :m’ +C—m :w and
2 2

I=+-1

* The equation can be compactly written as

€(x) = Z cmelmfx

m=—oo

* Stability would imply that none of the Fourier
component would grow.

* It is illustrative to show the procedure with an
example
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11:59 PM 33/35
von Neumann Analysis (Example)
. oT 9°T de d’e
e C d —_— = - = -
onsider 5 o P =) - o e

* Let the finite difference equation be

At
g =€ +D(e], —2¢] +¢],) Where D=5

i+l

mx
s

* Consider a Fourier component €' =c, e

. Si . n _ Tl 1,
nce X =1Ax, € =c_ ¢ =C_¢€

m

— mnAx
where em_ L e ® @ e e n+l

® ® ® ® e n

0 i1 i j+1 N
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Example (Cont’d)

. A
e Thus, €' =c e"", g}, =c '™ , e =Gg}

m

* Substitution of the above in the finite difference Eq.,
1, _ fie,, 16, (.6, -0,
Ge e —ﬁ' +Dc_e (e —2+e )

m=) G=1+D(2cos8,_-2)=1+2D(cos0_-1)

* For stability |G|S1 = —-1<G<1
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Example (Cont’d)

G<l1 -1<G

14+2D(cos 6, —-1)<1 -1<1+2D(cos 6, —-1)
—-2<2D(cos 6, -1)
1

D———
(I—cosB,)

2D(cos 6, -1)<0
D=0

smallest value = D <0.5

* Thus for stability there is an upper bound on At
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