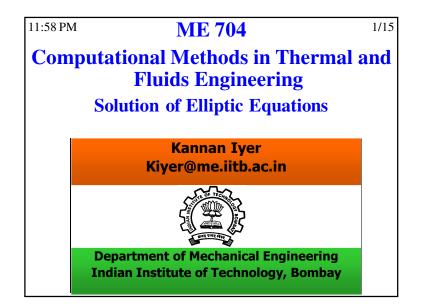
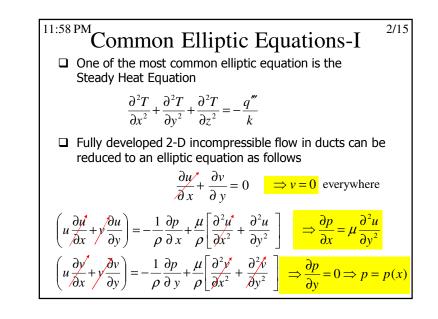
1



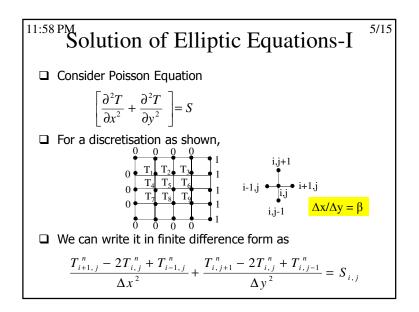


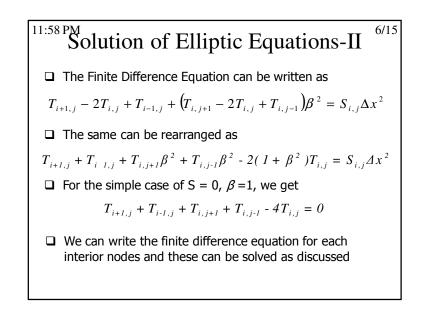
^{11:58 PM}Common Elliptic Equations-II ^{3/15}

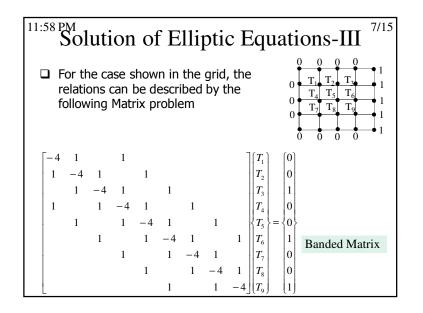
$$\frac{\partial p}{\partial x} = \mu \frac{\partial^2 u}{\partial y^2} \qquad \Rightarrow \frac{\partial^2 u}{\partial y^2} = \frac{1}{\mu} \frac{\partial p}{\partial x} = C$$
f(x) f(y)

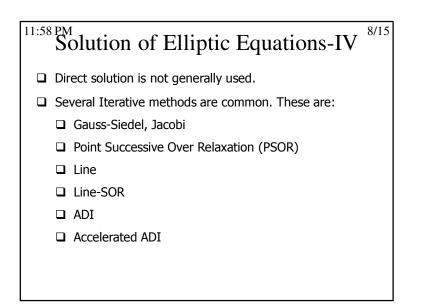
A similar extension to 3-D with v=0 and w=0 leads to
$$\frac{\partial p}{\partial x} = \mu \left[\frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial w^2} \right]$$
In general, the above can be summed into
$$\frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} = 0 \qquad \frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} = f(x, y)$$
Laplace Eq. Poisson Eq.

11:58 PM	4/15
Common Elliptic Equations-III	
Comparing with our standard form	
$Af_{xx} + Bf_{xy} + Cf_{yy} + Df_{x} + Ef_{y} + F = 0$	
B=0	
□ For positive A and C, B^2 -4AC < 0	
The equations are elliptic	
No characteristic directions	
No discontinuities	
Information spreads in all directions	
Every point affects every other point	









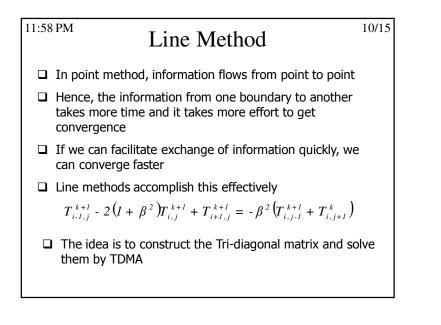
11:58 PM Jacobi and Gauss Siedel Jacobi (for S = 0) $T_{i,j}^{k+1} = \frac{T_{i+1,j}^{k} + T_{i-1,j}^{k} + (T_{i,j+1}^{k} + T_{i,j-1}^{k})\beta^{2}}{2(1 + \beta^{2})}$

9/15

- \Box Assume T⁰ and iterate using the above relation
- □ If the new values available are immediately used for other points, it is called Gauss Siedel

$$T_{i,j}^{k+1} = \frac{T_{i+1,j}^{k} + T_{i-1,j}^{k+1} + \left(T_{i,j+1}^{k} + T_{i,j-1}^{k+1}\right)\beta^{2}}{2\left(1 + \beta^{2}\right)}$$

□ The necessary and sufficient condition for convergence is the Scarborough Criterion (Diagonal ≥ sum of off-diagonal and Diagonal > sum of off-diagonal at least in one row)



11:58	ADI Method	11/15
	In line by line the information from one set of boundar moves fast but not from the other	ries
	This can be accelerated, if we can alternate the direction	on
	This method is called Alternate Direction Implicit	
	The iteration cycle has two parts.	
T_{i}^{k}	$\frac{\mathbf{X}-\mathbf{Sweep}}{\prod_{i,j=1}^{k+0.5} - 2(\mathbf{I} + \beta^2)} T_{i,j}^{k+0.5} + T_{i+1,j}^{k+0.5} = -\beta^2 (T_{i,j-1}^{k+0.5} + T_{i,j+1}^{k})$ Y-Sweep $\beta^2 T_{i,j-1}^{k+1} - 2(\mathbf{I} + \beta^2) T_{i,j}^{k+1} + \beta^2 T_{i,j+1}^{k+1} = -T_{i+1,j}^{k+0.5} - T_{i-1,j}^{k+1}$,)

Acceleration Procedures-I^{12/15}

Point-SOR

□ The essence is that for a linear system it has been seen that we can accelerate by over relaxation

$$T_{i,j}^{k+1} = \alpha T_{i,j}^{k+1} \Big|_{GS} + (1 - \alpha) T_{i,j}^{k}$$

- $\hfill\square$ The value of this over relaxation parameter, $\alpha,\,is>1$
- Substituting and rearranging gives

$$T_{i,j}^{k+1} = T_{i,j}^{k} + \alpha \left(T_{i,j}^{k+1} \Big|_{GS} - T_{i,j}^{k} \right)$$
$$T_{i,j}^{k+1} = T_{i,j}^{k} + \frac{\alpha}{2(1+\beta^{2})} \left(T_{i+1,j}^{k} + T_{i-1,j}^{k+1} + \left(T_{i,j+1}^{k} + T_{i,j-1}^{k+1} \right) \beta^{2} - 2(1+\beta^{2}) T_{i,j}^{k} \right)$$

Acceleration Procedures-II
Line-SOR
The equation derived in the previous equation can be rearranged as
Same Eq. $T_{i,j}^{k+1} = T_{i,j}^{k} + \frac{\alpha}{2(1+\beta^2)} (T_{i+1,j}^{k} + T_{i-1,j}^{k+1} + (T_{i,j+1}^{k} + T_{i,j-1}^{k+1})\beta^2 - 2(1+\beta^2)T_{i,j}^{k})$
$2\left(1+\beta^{2}\right)T_{i,j}^{k+1}=2\left(1+\beta^{2}\right)T_{i,j}^{k}+\alpha\left(T_{i+1,j}^{k}+T_{i-1,j}^{k+1}+\left(T_{i,j+1}^{k}+T_{i,j-1}^{k+1}\right)\beta^{2}-2\left(1+\beta^{2}\right)T_{i,j}^{k}\right)$
$\alpha T_{i+1,j}^{k+1} - 2\left(1+\beta^2\right) T_{i,j}^{k+1} + \alpha T_{i-1,j}^{k+1} = -(1-\alpha) 2\left(1+\beta^2\right) T_{i,j}^{k} - \alpha \left(T_{i,j+1}^{k}+T_{i,j-1}^{k+1}\right) \beta^2$

11:58 PN	⁴ Accele	ration P	rocedure	es-IV ^{15/15}
		Relative Com	nparison	
	Method	Iterations	Time (CPU)	α_{opt}
	GS (point)	574	5.524	
	GS(Line)	308	7.196	
	PSOR	52	1.082	1.78
	LSOR	36	1.410	1.265
	ADI	157	6.693	
	AADI	23	1.535	1.27

Acceleration Procedures-III				
Accelerated ADI				
The equation derived for LSOR can be rearranged as				
X-Sweep				
$\alpha T_{i+1,j}^{k+0.5} - 2(1+\beta^2)T_{i,j}^{k+0.5} + \alpha T_{i-1,j}^{k+0.5} = -(1-\alpha)2(1+\beta^2)T_{i,j}^{k} - \alpha (T_{i,j+1}^{k}+T_{i,j-1}^{k+0.5})\beta^2$				
Y-Sweep				
$\alpha\beta^{2}T_{i,j+1}^{k+1} - 2(1+\beta^{2})T_{i,j}^{k+1} + \alpha\beta^{2}T_{i,j-1}^{k+1} = -(1-\alpha)2(1+\beta^{2})T_{i,j}^{k+0.5} - \alpha(T_{i+1,j}^{k+0.5} + T_{i-1,j}^{k+1})$				
Relative Comparison				
For a 21X41 nodes for a slab of 1X2 with one of the smaller side held at 1, and for the same accuracy, results have been given in Hoffman and Chiang				
It is reproduced in next slide				