$11: 58 \mathrm{PM}$	ME 704	1/15
Computational Methods in Thermal and		
Fluids Engineering		
	Solution of Elliptic Equations	

Kannan Iyer
Kiyer@me.iitb.ac.in

Department of Mechanical Engineering Indian Institute of Technology, Bombay
${ }^{11: 58 \mathrm{PM}}$ Common Elliptic Equations-I
\square One of the most common elliptic equation is the Steady Heat Equation

$$
\frac{\partial^{2} T}{\partial x^{2}}+\frac{\partial^{2} T}{\partial y^{2}}+\frac{\partial^{2} T}{\partial z^{2}}=-\frac{q^{\prime \prime \prime}}{k}
$$

- Fully developed 2-D incompressible flow in ducts can be reduced to an elliptic equation as follows

$$
\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}=0 \quad \Rightarrow v=0 \text { everywhere }
$$

$$
\left(u \frac{\partial \hat{u}}{\partial x}+y \frac{\partial u}{\partial y}\right)=-\frac{1}{\rho} \frac{\partial p}{\partial x}+\frac{\mu}{\rho}\left[\frac{\partial^{2} u^{4}}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}\right] \Rightarrow \frac{\partial p}{\partial x}=\mu \frac{\partial^{2} u}{\partial y^{2}}
$$

$$
\left(u \frac{\partial y^{\prime}}{\partial x}+y \frac{\partial v}{\partial y}\right)=-\frac{1}{\rho} \frac{\partial p}{\partial y}+\frac{\mu}{\rho}\left[\frac{\partial^{2} v^{2}}{\partial x^{2}}+\frac{\partial^{2} \not \partial}{\partial y^{2}}\right] \Rightarrow \frac{\partial p}{\partial y}=0 \Rightarrow p=p(x)
$$

11:58 PM

4/15

Common Elliptic Equations-III

- Comparing with our standard form

$$
A f_{x x}+B f_{x y}+C f_{y y}+D f_{x}+E f_{y}+F=0
$$

- For positive A and $C, B^{2}-4 A C<0$
- The equations are elliptic
- No characteristic directions
- No discontinuities
- Information spreads in all directions
- Every point affects every other point
${ }^{11: 58 P}$ Solution of Elliptic Equations-I
5/15
- Consider Poisson Equation

$$
\left[\frac{\partial^{2} T}{\partial x^{2}}+\frac{\partial^{2} T}{\partial y^{2}}\right]=S
$$

- For a discretisation as shown,

- We can write it in finite difference form as

$$
\frac{T_{i+1, j}^{n}-2 T_{i, j}^{n}+T_{i-1, j}^{n}}{\Delta x^{2}}+\frac{T_{i, j+1}^{n}-2 T_{i, j}^{n}+T_{i, j-1}^{n}}{\Delta y^{2}}=S_{i, j}
$$

${ }^{11: 58 P M}$ Solution of Elliptic Equations-II

- The Finite Difference Equation can be written as
$T_{i+1, j}-2 T_{i, j}+T_{i-1, j}+\left(T_{i, j+1}-2 T_{i, j}+T_{i, j-1}\right) \beta^{2}=S_{i, j} \Delta x^{2}$
- The same can be rearranged as
$T_{i+1, j}+T_{i l, j}+T_{i, j+1} \beta^{2}+T_{i, j-1} \beta^{2}-2\left(1+\beta^{2}\right) T_{i, j}=S_{i, j} \Delta x^{2}$
- For the simple case of $S=0, \beta=1$, we get

$$
T_{i+l, j}+T_{i-l, j}+T_{i, j+l}+T_{i, j-l}-4 T_{i, j}=0
$$

- We can write the finite difference equation for each interior nodes and these can be solved as discussed

${ }^{11: 58} \mathrm{PM}$ Molution of Elliptic Equations-IV ${ }^{8 / 1}$
D Direct solution is not generally used.
- Several Iterative methods are common. These are:
- Gauss-Siedel, Jacobi
- Point Successive Over Relaxation (PSOR)
- Line
- Line-SOR
- ADI
- Accelerated ADI

${ }^{11: 58 \text { PM }}$ Jacobi and Gauss Siedel

] Jacobi (for $S=0$)

$$
T_{i, j}^{k+1}=\frac{T_{i+1, j}^{k}+T_{i-1, j}^{k}+\left(T_{i, j+1}^{k}+T_{i, j-1}^{k}\right) \beta^{2}}{2\left(1+\beta^{2}\right)}
$$

Assume T^{0} and iterate using the above relation
If the new values available are immediately used for other points, it is called Gauss Siedel

$$
T_{i, j}^{k+1}=\frac{T_{i+1, j}^{k}+T_{i-1, j}^{k+1}+\left(T_{i, j+1}^{k}+T_{i, j-1}^{k+1}\right) \beta^{2}}{2\left(1+\beta^{2}\right)}
$$

- The necessary and sufficient condition for convergence is the Scarborough Criterion (Diagonal \geq sum of off-diagonal and Diagonal > sum of off-diagonal at least in one row)

11:58 PM

Line Method

I. In point method, information flows from point to point
] Hence, the information from one boundary to another takes more time and it takes more effort to get convergence
. If we can facilitate exchange of information quickly, we can converge faster

- Line methods accomplish this effectively

$$
T_{i-1, j}^{k+1}-2\left(1+\beta^{2}\right) T_{i, j}^{k+1}+T_{i+1, j}^{k+1}=-\beta^{2}\left(T_{i, j-l}^{k+1}+T_{i, j+l}^{k}\right)
$$

The idea is to construct the Tri-diagonal matrix and solve them by TDMA

11:58 PM 11/15

In line by line the information from one set of boundaries moves fast but not from the other

- This can be accelerated, if we can alternate the direction
- This method is called Alternate Direction Implicit
- The iteration cycle has two parts.

$$
\begin{aligned}
& \text { X-Sweep } \\
& T_{i-1, j}^{k+0.5}-2\left(1+\beta^{2}\right) T_{i, j}^{k+0.5}+T_{i+1, j}^{k+0.5}=-\beta^{2}\left(T_{i, j-1}^{k+0.5}+T_{i, j+1}^{k}\right) \\
& \text { Y-Sweep } \\
& \quad \beta^{2} T_{i, j-1}^{k+1}-2\left(1+\beta^{2}\right) T_{i, j}^{k+1}+\beta^{2} T_{i, j+1}^{k+1}=-T_{i+1, j}^{k+0.5}-T_{i-1, j}^{k+1}
\end{aligned}
$$

${ }^{11: 58 \mathrm{PM}}$ Acceleration Procedures-I

- Point-SOR
- The essence is that for a linear system it has been seen that we can accelerate by over relaxation

$$
T_{i, j}^{k+1}=\left.\alpha T_{i, j}^{k+1}\right|_{G S}+(1-\alpha) T_{i, j}^{k}
$$

The value of this over relaxation parameter, α, is >1

- Substituting and rearranging gives

$$
T_{i, j}^{k+1}=T_{i, j}^{k}+\alpha\left(\left.T_{i, j}^{k+1}\right|_{G S}-T_{i, j}^{k}\right)
$$

$$
T_{i, j}^{k+1}=T_{i, j}^{k}+\frac{\alpha}{2\left(1+\beta^{2}\right)}\left(T_{i+1, j}^{k}+T_{i-1, j}^{k+1}+\left(T_{i, j+1}^{k}+T_{i, j-1}^{k+1}\right) \beta^{2}-2\left(1+\beta^{2}\right) T_{i, j}^{k}\right)
$$

11:58 PM \quad Acceleration Procedures-II
Line-SOR
a The equation derived in the previous equation can be
rearranged as
Same Eq.
$T_{i, j}^{k+1}=T_{i, j}^{k}+\frac{\alpha}{2\left(1+\beta^{2}\right)}\left(T_{i+1, j}^{k}+T_{i-1, j}^{k+1}+\left(T_{i, j+1}^{k}+T_{i, j-1}^{k+1}\right) \beta^{2}-2\left(1+\beta^{2}\right) T_{i, j}^{k}\right)$
$2\left(1+\beta^{2}\right) T_{i, j}^{k+1}=2\left(1+\beta^{2}\right) T_{i, j}^{k}+\alpha\left(T_{i+1, j}^{k}+T_{i-1, j}^{k+1}+\left(T_{i, j+1}^{k}+T_{i, j-1}^{k+1}\right) \beta^{2}-2\left(1+\beta^{2}\right) T_{i, j}^{k}\right)$
$\alpha T_{i+1, j}^{k+1}-2\left(1+\beta^{2}\right) T_{i, j}^{k+1}+\alpha T_{i-1, j}^{k+1}=-(1-\alpha) 2\left(1+\beta^{2}\right) T_{i, j}^{k}-\alpha\left(T_{i, j+1}^{k}+T_{i, j-1}^{k+1}\right) \beta^{2}$

11:58 PM Acceleration Procedures-III Accelerated ADI The equation derived for LSOR can be rearranged as X-Sweep $\alpha T_{i+1, j}^{k+0.5}-2\left(1+\beta^{2}\right) T_{i, j}^{k+0.5}+\alpha T_{i-1, j}^{k+0.5}=-(1-\alpha) 2\left(1+\beta^{2}\right) T_{i, j}^{k}-\alpha\left(T_{i, j+1}^{k}+T_{i, j-1}^{k+0.5}\right) \beta^{2}$ Y-Sweep $\alpha \beta^{2} T_{i, j+1}^{k+1}-2\left(1+\beta^{2}\right) T_{i, j}^{k+1}+\alpha \beta^{2} T_{i, j-1}^{k+1}=-(1-\alpha) 2\left(1+\beta^{2}\right) T_{i, j}^{k+0.5}-\alpha\left(T_{i+1, j}^{k+0.5}+T_{i-1, j}^{k+1}\right)$ - Relative Comparison - For a 21×41 nodes for a slab of 1×2 with one of the smaller side held at 1 , and for the same accuracy, results have been given in Hoffman and Chiang It is reproduced in next slide	

Acceleration Procedures-IV				15/15
	Relative Co	arison		
Method	Iterations	Time (CPU)	$\alpha_{\text {opt }}$	
11:58 PM	574	5.524		
	308	7.196		
	52	1.082	1.78	
	36	1.410	1.265	
	157	6.693		
AADI	23	1.535	1.27	

