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Parabolic Equation-I 
� One of the most common Parabolic equation is the 

1-D Unsteady Heat Equation 

k

q

x

T

t

T ′′′
+

∂

∂
=

∂

∂
2

21

α

� Considering x and t as independent variables, if we 

compare with the general second order differential 
equations, we can conclude that 
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� This implies that  B2-4AC = 0 

� The equation is parabolic 
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� To appreciate the nature of this equation a little 

better, we move back to the characteristic equation 
basics 

Parabolic Equation-II 

�In matrix form, we can write 
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�The characteristic direction would be obtained from 
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Parabolic Equation-III 

� Discontinuities can exist along t = constant 

� We can interpret this as there can be discontinuities 
at the initial condition 

�  Further, the speed of propagation along the 
characteristic direction given by 

∞=⇒== u
dx

dt

u
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� This implies that signals propagate along t=C at 

infinite speed 

� This can be interpreted in a manner that if the 

boundary value is time dependent, its impact inside 
the domain will propagate with infinite speed! 
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� Further, there cannot be any discontinuities in the 

spatial direction and the variation will be smooth 

� Some of the concepts will be exploited as we go 

along 

� We will now consider the solutions for the case of no 

source term for simplicity. However, its presence is 
not going to affect the quality of our discussion 

� Similarly, we will keep the discussion for the Dirichlet 
boundary condition, while we can follow the 

discussion for the Neumann case in a manner similar 

to the discussions on ODE solutions 

Parabolic Equation-IV 
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Physical Domain: 
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Notations 

Governing Equation: 
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�One of the FDM approximation is 
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�This leads to the nodal equation 
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FTCS Method-I 

�This method is called explicit method, as the 

values at Ti
n+1 are readily obtained explicitly, once 

the initial and boundary conditions are known  
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FTCS Method-II 

�If we need accurate results, we need more sapatial 

resolution, and this implies small ∆x. This will 

limit ∆t to be small and takes more computational 

time 

�Note that halving ∆x would call for decreasing ∆t 

by a factor of 4! and this is worse as we move to 

2D and 3D   

�We had shown earlier that this method has a 

stability limit given by D ≤ 0.5, 
2x

t
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=where                          
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� We had shown earlier that the consistency 

analysis leads to 
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FTCS Method-III 

� We had also pointed out earlier that the time 

derivative can be converted into space derivative 

by the use of governing equation 
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� In this particular case, we can write 

FTCS Method-IV 
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� Substituting this in the previous equation, we get, 
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� If we make the term in the bracket equal to zero, 

we will get a higher order accurate method 
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BTCS Method-I 
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�This leads to the nodal equation 
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� Also called Fully Implicit Method 
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BTCS Method-II 
• For the simple case of boundary temperature 

known 
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• The matrix can be solved by TDMA 
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• Consistency analysis gives  
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• von Neumann Stability method gives  
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BTCS Method-III 
11:57 PM 13/26 

Crank Nicholson Method-I 
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• Defining and 

• The above gives the nodal equation as 
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Crank Nicholson Method-II 

• von Neumann Stability method gives  
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• Since              it is unconditionally stable  1G ≤
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Theta Method 
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• The above gives the nodal equation as 
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• Consistency analysis gives  
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DuFort-Frankel Scheme-I 

• Before moving to multi-dimensional equation it is 

useful to look at an unconditionally stable explicit 

scheme. 

• If one attempts to get a CTCS scheme, given by 
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    Defining and 

• The method turns out to be unconditionally unstable 
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DuFort-Frankel Scheme-II 

• If the scheme is modified as 
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• The nodal equation for the diffusion equation 

becomes 
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DuFort-Frankel Scheme-III 
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• Can get higher order accuracy by choosing 

• Stability Analysis gives 
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• For D < 0.5, the term under the square root is always 

positive. The variation of G with θ can be plotted 
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• For D > 0.5, the term under the square root is 

imaginary and we can write G as 
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DuFort-Frankel Scheme-IV 
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• The magnitude of G can be written as 
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Multi-Dimensional Equations 

� FTCS method  
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� Nodal Equation for the above scheme shall be  
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Governing Equation: 
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Crank Nicholson Scheme 
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� Crank Nicholson Scheme 

� Unconditionally Stable, but will need a banded 

solver and is not usually done. 
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Alternating Direction Implicit 

� In order to exploit TDMA, ADI schemes were 

evolved, called fractional step method 
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� Unconditionally stable in 2D. But extension to 

3D does not produce an unconditionally stable 

method. 
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� For 3-D, ADI based on Crank-Nicholson method 

that is unconditionally stable has been worked 

developed. The method proceeds in 3 steps.   

{ } ( ) ( )







+++∆=− n

z

n

y

nxn TTTTtTT 22*
2

*

2
δδ

δ
α

{ } { } ( )











+













++








+∆=− n

z

nynxn
TTTTTtTT

2**

2

*
2

**

22
δ

δδ
α

{ } { } { }




















++














++








+∆=− ++ nnznynxn

ji

n

ji TTTTTTtTT 1
2

**

2

*
2

,

1

,
222

δδδ
α

Index i , j, k dropped for convenience 
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