11:57 PM ME 704 1/26
 Computational Methods in Thermal and Fluids Engineering KNI-9 Solution of Parabolic Equations

Department of Mechanical Engineering Indian Institute of Technology, Bombay

11:57 PM Parabolic Equation-I

- One of the most common Parabolic equation is the 1-D Unsteady Heat Equation

$$
\frac{1}{\alpha} \frac{\partial T}{\partial t}=\frac{\partial^{2} T}{\partial x^{2}}+\frac{q^{\prime \prime \prime}}{k}
$$

Considering x and t as independent variables, if we compare with the general second order differential equations, we can conclude that

$$
\begin{gathered}
A f_{x x}+B f_{x t}+C f_{t t}+D f_{x}+E f_{t}+F=0 \\
B=0 \quad C=0
\end{gathered}
$$

- This implies that $B^{2}-4 A C=0$
- The equation is parabolic
11:57 PM Parabolic Equation-II
a To appreciate the nature of this equation a little
better, we move back to the characteristic equation
basics
In matrix form, we can write
$\left[\begin{array}{ccc}A & 0 & 0 \\ d x & d t & 0 \\ 0 & d x & d t\end{array}\right]\left\{\begin{array}{l}f_{x x} \\ f_{x t} \\ f_{t t}\end{array}\right\}=\left\{\begin{array}{c}-E f_{t}-F \\ d\left(f_{x}\right) \\ d\left(f_{t}\right)\end{array}\right\}$
\square The characteristic direction would be obtained from

$$
\left|\begin{array}{ccc}
A & 0 & 0 \\
d x & d t & 0 \\
0 & d x & d t
\end{array}\right|=0 \Rightarrow A d t^{2}=0 \quad \Rightarrow d t=0
$$

11:57 PM Parabolic Equation-III

\square Discontinuities can exist along $t=$ constant
We can interpret this as there can be discontinuities at the initial condition

- Further, the speed of propagation along the characteristic direction given by

$$
\frac{1}{u}=\frac{d t}{d x}=0 \Rightarrow u=\infty
$$

\square This implies that signals propagate along $\mathrm{t}=\mathrm{C}$ at infinite speed
\square This can be interpreted in a manner that if the boundary value is time dependent, its impact inside the domain will propagate with infinite speed!

11:57 PM Parabolic Equation-IV

- Further, there cannot be any discontinuities in the spatial direction and the variation will be smooth
\square Some of the concepts will be exploited as we go along

We will now consider the solutions for the case of no source term for simplicity. However, its presence is not going to affect the quality of our discussion
\square Similarly, we will keep the discussion for the Dirichlet boundary condition, while we can follow the discussion for the Neumann case in a manner similar to the discussions on ODE solutions

11:57 PM FTCS Method-I

\square One of the FDM approximation is

$$
\left.\frac{\partial \mathrm{T}}{\partial \mathrm{t}}\right|_{\mathrm{i}} ^{\mathrm{n}}=\left.\frac{\mathrm{T}_{\mathrm{i}}^{\mathrm{n}+1}-\mathrm{T}_{\mathrm{i}}^{\mathrm{n}}}{\Delta \mathrm{t}} \quad \frac{\partial^{2} \mathrm{~T}}{\partial \mathrm{x}^{2}}\right|_{\mathrm{i}} ^{\mathrm{n}}=\frac{\mathrm{T}_{\mathrm{i}+1}^{\mathrm{n}}-2 \mathrm{~T}_{\mathrm{i}}^{\mathrm{n}}+\mathrm{T}_{\mathrm{i}-1}^{\mathrm{n}}}{\Delta \mathrm{x}^{2}}
$$

\square This leads to the nodal equation

$$
\mathrm{T}_{\mathrm{i}}^{\mathrm{n}+1}=\mathrm{T}_{\mathrm{i}}^{\mathrm{n}}+\frac{\alpha \Delta \mathrm{t}}{\Delta \mathrm{x}^{2}}\left(\mathrm{~T}_{\mathrm{i}+1}^{\mathrm{n}}-2 \mathrm{~T}_{\mathrm{i}}^{\mathrm{n}}+\mathrm{T}_{\mathrm{i}-1}^{\mathrm{n}}\right)
$$

\square This method is called explicit method, as the values at $\mathrm{T}_{\mathrm{i}}{ }^{\mathrm{n}+1}$ are readily obtained explicitly, once the initial and boundary conditions are known

11:57 PM
 Notations

Governing Equation: $\quad \frac{\partial \mathrm{T}}{\partial \mathrm{t}}=\alpha \frac{\partial^{2} \mathrm{~T}}{\partial \mathrm{x}^{2}}$
Physical Domain:

Computational
Domain:

FTCS Method-II

-We had shown earlier that this method has a stability limit given by $\mathrm{D} \leq 0.5$, where $\mathrm{D}=\frac{\alpha \Delta \mathrm{t}}{\Delta \mathrm{x}^{2}}$
\square If we need accurate results, we need more sapatial resolution, and this implies small Δx. This will limit Δt to be small and takes more computational time
\square Note that halving $\Delta \mathrm{x}$ would call for decreasing $\Delta \mathrm{t}$ by a factor of 4 ! and this is worse as we move to 2 D and 3D
FTCS Method-III

\square| We had shown earlier that the consistency |
| :---: |
| analysis leads to |

$\mathrm{T}_{\mathrm{i}}^{\mathrm{n}}+\left.\frac{\partial \mathrm{T}}{\partial \mathrm{t}}\right|_{\mathrm{i}} ^{\mathrm{n}} \Delta \mathrm{t}+\left.\frac{\partial^{2} \mathrm{~T}}{\partial \mathrm{t}^{2}}\right|_{\mathrm{i}} ^{\mathrm{n}} \int_{\mathrm{i}} \frac{\Delta \mathrm{t}^{2}}{2!}+\mathrm{O}\left(\Delta \mathrm{t}^{3}\right)=$
$\mathrm{T}_{\mathrm{i}}^{\mathrm{n}}+\alpha \Delta \mathrm{t}\left(\left.\frac{\partial^{2} \mathrm{~T}}{\partial \mathrm{x}^{2}}\right|_{\mathrm{i}} ^{\mathrm{n}}+\left.2 \frac{\partial^{4} \mathrm{~T}}{\partial \mathrm{x}^{4}}\right|_{\mathrm{i}} ^{\mathrm{n}} \frac{\Delta \mathrm{x}^{2}}{4!}+\mathrm{O}\left(\Delta \mathrm{x}^{4}\right)\right)$
$\frac{\partial T}{\partial t}=\alpha \frac{\partial^{2} T}{\partial x^{2}}+\alpha \Delta t\left(\frac{\partial^{4} T}{\partial x^{4}} \frac{\Delta x^{2}}{12}-\frac{\partial^{2} T}{\partial t^{2}} \frac{\Delta t}{2 \alpha}+O\left(\Delta t^{2}, \Delta x^{4}\right)\right)$
\square

We had also pointed out earlier that the time
derivative can be converted into space derivative
by the use of governing equation

11:57 PM
10/26

In this paticula

$$
T_{t t}=\left(T_{t}\right)_{t}=\left(\alpha T_{x x}\right)_{t}=\left(\alpha T_{t}\right)_{x x}=\left(\alpha\left(\alpha T_{x x}\right)\right)_{x}=\alpha^{2} T_{x x x}
$$

- Substituting this in the previous equation, we get,

$$
\frac{\partial T}{\partial t}=\alpha \frac{\partial^{2} T}{\partial x^{2}}+\alpha\left(\frac{\partial^{4} T}{\partial x^{4}} \frac{\Delta x^{2}}{12}-\alpha^{2} \frac{\partial^{4} T}{\partial x^{4}} \frac{\Delta t}{2 \alpha}+O\left(\Delta t^{2}, \Delta x^{4}\right)\right)
$$

$$
\Rightarrow \frac{\partial T}{\partial t}=\alpha \frac{\partial^{2} T}{\partial x^{2}}+\alpha \frac{\partial^{4} T}{\partial x^{4}}\left(\frac{\Delta x^{2}}{12}-\alpha \frac{\Delta t}{2}\right)+O\left(\Delta t^{2}, \Delta x^{4}\right)
$$

- If we make the term in the bracket equal to zero, we will get a higher order accurate method

$$
\frac{\Delta x^{2}}{12}-\alpha \frac{\Delta t}{2}=0 \Rightarrow \alpha \frac{\Delta t}{\Delta x^{2}}=\frac{1}{6} \quad \mathrm{D}=1 / 6
$$

- The matrix can be solved by TDMA

$$
\begin{aligned}
& \text { 11:57 PM } \quad \text { BTCS Method-II } \\
& \text { - For the simple case of boundary temperature } \\
& \text { known } \bullet \bullet \bullet \text { n+1 } \\
& {\left[\begin{array}{ccccc}
1 & 0 & & & \\
-\frac{\alpha \Delta t}{\Delta x^{2}} & 1+\frac{2 \alpha \Delta t}{\Delta x^{2}} & -\frac{\alpha \Delta t}{\Delta x^{2}} & & \\
& -\frac{\alpha \Delta t}{\Delta x^{2}} & 1+\frac{2 \alpha \Delta t}{\Delta x^{2}} & -\frac{\alpha \Delta t}{\Delta x^{2}} & \\
& & -\frac{\alpha \Delta t}{\Delta x^{2}} & 1+\frac{2 \alpha \Delta t}{\Delta x^{2}} & -\frac{\alpha \Delta t}{\Delta x^{2}} \\
& & & 0 & 1
\end{array}\right]\left\{\begin{array}{l}
T_{1}^{n+1} \\
T_{2}^{n+1} \\
T_{3}^{n+1} \\
T_{4}^{n+1} \\
T_{5}^{n+1}
\end{array}\right\}=\left\{\begin{array}{c}
T_{1}^{n+1} \\
T_{2}{ }^{n} \\
T_{3}^{n} \\
T_{4}{ }^{n} \\
T_{5}^{n+1}
\end{array}\right\}}
\end{aligned}
$$

BTCS Method-III

- Consistency analysis gives

$$
\mathrm{T}_{\mathrm{t}}=\alpha \mathrm{T}_{\mathrm{xx}}+\left(\frac{1}{2} \alpha^{2} \Delta \mathrm{t}+\frac{1}{12} \alpha^{2} \Delta \mathrm{x}^{2}\right) \mathrm{T}_{\mathrm{xxxx}}+\text { HOT }
$$

- von Neumann Stability method gives

$$
G=\left(\frac{1}{1+2 D(1-\cos \theta)}\right)
$$

Since $|G| \leq 1$ it is
unconditionally stable

11:57 PM
14/26

Crank Nicholson Method-I

- Defining $\left.\quad \frac{\partial \mathrm{T}}{\partial \mathrm{t}}\right|_{\mathrm{i}} ^{\mathrm{n}}=\frac{\mathrm{T}_{\mathrm{i}}^{\mathrm{n}+1}-\mathrm{T}_{\mathrm{i}}^{\mathrm{n}}}{\Delta \mathrm{t}}$ and

$$
\left.\frac{\left.\partial^{2} T\right|^{n}}{\partial x^{2}}\right|_{i} ^{n}=0.5\left(\frac{T_{i+1}^{n+1}-2 T_{i}^{n+1}+T_{i-1}^{n+1}}{\Delta x^{2}}+\frac{T_{i+1}^{n}-2 T_{i}^{n}+T_{i-1}^{n}}{\Delta x^{2}}\right)
$$

- The above gives the nodal equation as
$-\mathrm{DT}_{\mathrm{i}+1}^{\mathrm{n}+1}+2(1+\mathrm{D}) \mathrm{T}_{\mathrm{i}}^{\mathrm{n}+1}-\mathrm{DT}_{\mathrm{i}-1}^{\mathrm{n}+1}=\mathrm{DT}_{\mathrm{i}+1}^{\mathrm{n}}+2(1-\mathrm{D}) \mathrm{T}_{\mathrm{i}}^{\mathrm{n}}+\mathrm{DT}_{\mathrm{i}-1}^{\mathrm{n}+1}$
- Consistency analysis gives

$$
\mathrm{T}_{\mathrm{t}}=\alpha \mathrm{T}_{\mathrm{xx}}+\left(\frac{1}{12} \alpha^{2} \Delta \mathrm{x}^{2}\right) \mathrm{T}_{\mathrm{xxxx}}+\mathrm{O}\left(\Delta \mathrm{t}^{2}, \Delta \mathrm{x}^{4}\right)
$$

11:57PM Theta Method
• Defining $\left.\frac{\partial T}{\partial t}\right|_{i} ^{n}=\frac{T_{i}^{n+1}-T_{i}^{n}}{\Delta t}$ and
$\left.\frac{\partial^{2} T}{\partial x^{2}}\right|_{i} ^{n}=\theta\left(\frac{T_{i+1}^{n+1}-2 T_{i}^{n+1}+T_{i-1}^{n+1}}{\Delta x^{2}}\right)+(1-\theta)\left(\frac{T_{i+1}^{n}-2 T_{i}^{n}+T_{i-1}^{n}}{\Delta x^{2}}\right)$
•The above gives the nodal equation as
$-\theta D T_{i+1}^{n+1}+(1+2 \theta D) T_{i}^{n+1}-\theta D T_{i-1}^{n+1}=$
$(1-\theta) D T_{i+1}^{n}+(1-2(1-\theta) D) T_{i}^{n}+(1-\theta) D T_{i-1}^{n+1}$

Theta Method (Cont'd)

- Consistency analysis gives
$\mathrm{T}_{\mathrm{t}}=\alpha \mathrm{T}_{\mathrm{xx}}+\left(\left(\theta-\frac{1}{2}\right) \alpha^{2} \Delta \mathrm{t}+\frac{1}{12} \alpha^{2} \Delta \mathrm{x}^{2}\right) \mathrm{T}_{\mathrm{xxxx}}+$
$+\left[\left(\theta^{2}-\theta+\frac{1}{3}\right) \alpha^{3} \Delta \mathrm{t}^{2}+\frac{1}{6}\left(\theta-\frac{1}{2}\right) \alpha^{2} \Delta t \Delta \mathrm{x}^{2}+\frac{1}{360} \alpha \Delta \mathrm{x}^{4}\right] \mathrm{T}_{\mathrm{xxxxx}}$
- For $\theta=0.5$ the method is $\mathrm{O}\left(\Delta \mathrm{t}^{2}, \Delta \mathrm{x}^{2}\right)$
- For $\theta=\left(\frac{1}{2}-\frac{\Delta x^{2}}{12 \alpha \Delta t}\right)$ the method is $\mathrm{O}\left(\Delta \mathrm{t}^{2}, \Delta \mathrm{x}^{4}\right)$
- For $\theta=\left(\frac{1}{2}-\frac{\Delta \mathrm{x}^{2}}{12 \alpha \Delta \mathrm{t}}\right)$ and $\frac{\alpha \Delta \mathrm{t}}{\Delta \mathrm{x}^{2}}=\frac{1}{\sqrt{20}}$ the method is $\mathrm{O}\left(\Delta \mathrm{t}^{2}, \Delta \mathrm{x}^{6}\right)$

11:57 PM

DuFort-Frankel Scheme-II

- If the scheme is modified as

$$
\left.\frac{\partial T}{\partial t}\right|_{i} ^{n}=\frac{T_{i}^{n+1}-T_{i}^{n-1}}{2 \Delta t} \text { and }\left.\frac{\partial^{2} T}{\partial x^{2}}\right|_{i} ^{n}=\left(\frac{T_{i+1}^{n}-T_{i}^{n+1}-T_{i}^{n-1}+T_{i-1}^{n}}{\Delta x^{2}}\right)
$$

- The nodal equation for the diffusion equation becomes

$$
\begin{aligned}
& \frac{T_{i+1}^{n+1}-T_{i}^{n-1}}{2 \Delta t}=\alpha\left(\frac{T_{i+1}^{n}-T_{i}^{n+1}-T_{i}^{n-1}+T_{i-1}^{n}}{\Delta x^{2}}\right) \\
\Rightarrow & T_{i+1}^{n+1}=T_{i}^{n-1}+2 D\left(T_{i+1}^{n}-T_{i}^{n+1}-T_{i}^{n-1}+T_{i-1}^{n}\right) \\
\Rightarrow & T_{i}^{n+1}(1+2 D)=T_{i}^{n-1}(1-2 D)+2 D\left(T_{i+1}^{n}+T_{i-1}^{n}\right)
\end{aligned}
$$

DuFort-Frankel Scheme-I

- Before moving to multi-dimensional equation it is useful to look at an unconditionally stable explicit scheme.
- If one attempts to get a CTCS scheme, given by

Defining $\left.\quad \frac{\partial T}{\partial t}\right|_{i} ^{n}=\frac{T_{i}^{n+1}-T_{i}^{n-1}}{2 \Delta t}+O\left(\Delta t^{2}\right)$ and

$$
\left.\frac{\partial^{2} T}{\partial x^{2}}\right|_{i} ^{n}=\left(\frac{T_{i+1}^{n}-2 T_{i}^{n}+T_{i-1}^{n}}{\Delta x^{2}}\right)+O\left(\Delta x^{2}\right)
$$

- The method turns out to be unconditionally unstable

11:57 PM

20/26

DuFort-Frankel Scheme-III

$\Rightarrow T_{i}^{n+1}=\frac{(1-2 D)}{(1+2 D)} T_{i}^{n-1}+\frac{2 D}{(1+2 D)}\left(T_{i+1}^{n}+T_{i-1}^{n}\right)$

- Consistency analysis gives

$$
T_{t}=\alpha T_{x x}+\left(\frac{1}{12} \alpha^{2} \Delta x^{2}-\alpha^{3} \frac{\Delta t^{2}}{\Delta x^{2}}\right) T_{x x x}+O\left(\Delta t^{2}, \Delta x^{4}, \frac{\Delta t^{4}}{\Delta x^{4}}\right)
$$

- Inconsistent
- Can get higher order accuracy by choosing $\frac{\alpha \Delta t}{\Delta x^{2}}=\frac{1}{\sqrt{12}}$
- Stability Analysis gives

$$
G=\left(\frac{2 D \cos \theta \pm \sqrt{1-4 D^{2} \operatorname{Sin}^{2} \theta}}{1+2 D}\right)
$$

${ }^{11: 57 ~ P M}$ DuFort-Frankel Scheme-IV

- For $\mathrm{D}<0.5$, the term under the square root is always positive. The variation of G with θ can be plotted

- For $\mathrm{D}>0.5$, the term under the square root is imaginary and we can write G as

$$
G=\left(\frac{2 D \cos \theta \pm I \sqrt{4 D^{2} \operatorname{Sin}^{2} \theta-1}}{1+2 D}\right)
$$

11:57 PM

DuFort-Frankel Scheme-V

- The magnitude of G can be written as

$$
|G|=\left(\frac{\sqrt{4 D^{2} \cos ^{2} \theta+4 D^{2} \operatorname{Sin}^{2} \theta-1}}{1+2 D}\right)
$$

$$
|G|=\left(\frac{\sqrt{4 D^{2}-1}}{1+2 D}\right)
$$

- Unconditionally stable
11:57 PM Crank Nicholson Scheme $\quad 24 / 26$
\square Crank Nicholson Scheme $\frac{\partial T}{\partial t}=\frac{T_{i, j}^{n+1}-T_{i, j}^{n}}{\Delta t}$
$\frac{\partial^{2} T}{\partial x^{2}}=\frac{1}{2}\left(\frac{T_{i+1, j}^{n}-2 T_{i, j}^{n}+T_{i-1, j}^{n}}{\Delta x^{2}}+\frac{T_{i+1, j}^{n+1}-2 T_{i, j}^{n+1}+T_{i-1, j}^{n+1}}{\Delta x^{2}}\right)=\frac{1}{2} \delta_{x}^{2}\left(T_{i, j}^{n}+T_{i, j}^{n+1}\right)$
$\frac{\partial^{2} T}{\partial y^{2}}=\frac{1}{2}\left(\frac{T_{i, j+1}^{n}-2 T_{i, j}^{n}+T_{i, j-1}^{n}}{\Delta y^{2}}+\frac{T_{i, j+1}^{n+1}-2 T_{i, j}^{n+1}+T_{i, j-1}^{n+1}}{\Delta y^{2}}\right)=\frac{1}{2} \delta_{y}^{2}\left(T_{i, j}^{n}+T_{i, j}^{n+1}\right)$
\square Nodal Equation for the above scheme shall be
$T_{i, j}^{n+1}=T_{i, j}^{n}+\frac{\alpha \Delta t}{2}\left(\delta_{x}^{2}+\delta_{x}^{2}\right)\left(T_{i, j}^{n}+T_{i, j}^{n+1}\right)$
\square Unconditionally Stable, but will need a banded
solver and is not usually done.

${ }^{11: 57 ~ P M}$ Alternating Direction Implicit

- In order to exploit TDMA, ADI schemes were evolved, called fractional step method

$$
\begin{aligned}
& \frac{T_{i, j}^{n+0.5}-T_{i, j}^{n}}{\Delta t / 2}=\alpha\left(\delta_{x}^{2} T_{i, j}^{n+0.5}+\delta_{y}^{2} T_{i, j}^{n}\right) \\
& \frac{T_{i, j}^{n+1}-T_{i, j}^{n+0.5}}{\Delta t / 2}=\alpha\left(\delta_{x}^{2} T_{i, j}^{n+0.5}+\delta_{y}^{2} T_{i, j}^{n+1}\right)
\end{aligned}
$$

- Unconditionally stable in 2D. But extension to 3D does not produce an unconditionally stable method.

${ }^{11: 57 ~ P M}$ Alternating Direction Implicit

26/26

- For 3-D, ADI based on Crank-Nicholson method that is unconditionally stable has been worked developed. The method proceeds in 3 steps.

$$
T^{*}-T^{n}=\alpha \Delta t\left[\frac{\delta_{x}^{2}}{2}\left\{T^{*}+T^{n}\right\}+\left(\delta_{y}^{2} T^{n}\right)+\left(\delta_{z}^{2} T^{n}\right)\right]
$$

$$
T^{* *}-T^{n}=\alpha \Delta t\left[\left(\frac{\delta_{x}^{2}}{2}\left\{T^{*}+T^{n}\right\}\right)+\left(\frac{\delta_{y}^{2}}{2}\left\{T^{* *}+T^{n}\right\}\right)+\left(\delta_{z}^{2} T^{n}\right)\right]
$$

$$
T_{i, j}^{n+1}-T_{i, j}^{n}=\alpha \Delta t\left[\left(\frac{\delta_{x}^{2}}{2}\left\{T^{*}+T^{n}\right\}\right)+\left(\frac{\delta_{y}^{2}}{2}\left\{T^{* *}+T^{n}\right\}\right)+\left(\frac{\delta_{z}^{2}}{2}\left\{T^{n+1}+T^{n}\right\}\right)\right]
$$

Index $\mathrm{i}, \mathrm{j}, \mathrm{k}$ dropped for convenience

