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Treatment of Hyperbolic Equations-I 
� We have seen that the Parabolic and elliptic 

equations posed no special difficulty 

� Both FTCS and BTCS were very well behaved, 
though there was a time step restriction in 

FTCS. 

� However, hyperbolic equations have to be 
carefully handled 

� Using schemes that violate the domain of 

dependence, can produce severe violations 

� We had already seen earlier that convection 
equation was a hyperbolic equation. Let us go 

back 
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Analytical Solution 
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Forward-Time Centered-Space 

Method 
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• Nodal Equation becomes 
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Amplifying Dispersive 
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FTCS 

Scheme 

9:50 PM 5/35 

Lax Scheme - I 
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Inconsistent 
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• Consistency Analysis gives 
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• Nodal Equation becomes 
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Lax Scheme - II 
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• MPDE can be rewritten as 

• Conditionally stable for  1C ≤

• Exact for  1C =

• Diffusive for 1C <

• As C approaches 0 dissipation would increase 

• Method is )
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Lax Scheme 
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Lax Scheme 
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First Order Upwind Scheme - I 

• Nodal Equation becomes 
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• Consistency Analysis gives 
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Consistent 
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First Order Upwind Scheme- II 
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• MPDE can be rewritten as 

• Conditionally stable for  1C ≤

• Exact for  1C =

• Diffusive for 1C <

• As C approaches 0 dissipation would increase 

but is bounded unlike in Lax 

• Method is )x,t(O ∆∆
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First Order Upwind 
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First Order Upwind 
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Second Order Upwind Scheme -I 

• First order method can be modified as 

suggested by its MPDE as follows 

• To turn off the unwanted diffusion, let us solve 

for the modified equation 

( ) xxxt TC1xu5.0uTT −∆−=+

• The finite difference form of the above equation 

may be written as 
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• Nodal Equation becomes 
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• Consistency Analysis gives 

Consistent 

Second Order Upwind Scheme - II 
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• Conditionally stable for  2C ≤

• Less diffusive as leading diffusion term turned off  

• Method is )x,tx,t(O
22 ∆∆∆∆
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Second Order Upwind 
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Lax-Wendroff Scheme 
• Taylor Series can be used to devise a second 

order scheme for Convection Equation 
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• This can be expressed in the finite difference 

form as 
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Lax-Wendroff Scheme (Cont’d) 
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• Conditionally stable for  1C ≤

• Less diffusive as leading diffusion term is of 

fourth order  

• Method is )x,t(O 22 ∆∆

• Exact for  1C =
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Lax-Wendroff 
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Lax-Wendroff 
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Backward-Time Centered-Space 

Method - I 
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• Consistency Analysis gives 
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Dissipating Dispersive 

• Unconditionally stable  

• For a given ∆x, as ∆t increases (C increases), the 

diffusion as well as will increase  

• Method is ),(
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Method - II 
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BTCS 

Scheme 
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BTCS 

Scheme 
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• We generally notice that in most explicit schemes 

the solution is exact for C = 1 

• We shall look at the method in the following slides 

• A lot of insight can be obtained by considering the 

method of characteristics 

The General Observations  

• There is numerical diffusion introduced in these 

schemes for C other than 1 

• Though we are able to do consistency analysis 

and understand the nature of the schemes, no 

physical explanation was foreseeable 

9:50 PM 25/35 Method of Characteristics - I 
• MOC is a technique by which a PDE is reduced 

by one independent coordinate 

• The governing equation is 

• By this method, 1-D transient PDE can be reduced 

to an ODE along the characteristic directions 

• Since T = T(x,t), using chain rule assuming 
continuity of T, we can write  
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• The first equation describes the spatial variation of 

field variable T along the characteristic direction 

• Thus, the PDE has been split into two ODEs, one 

being characteristic direction and the other the 

compatibility condition 

• For linear convection 

equation the point on 

the downstream of 

characteristic can only 

be influenced by the 

state of upstream points 

along the direction  

Method of Characteristics - II 

Characteristic direction 

Path 

Lines t 

x 
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Method of Characteristics - III 
• The analytical solution using MOC technique can 

be visualized as follows 

• Integration of the characteristic equation with x = x0 

at t = t0  gives 

T Controlled by IC 

T Controlled 

by BC 

00 TT
dt

dT
=⇒= Along the 

Characteristic 

T0 (t) 

T0 (x) 
x 
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• Analytical procedure will be to first get x0  by putting 

t0 = 0, for the point of interest (x,t) from the equation 

of path line 
)( 00 ttuxx −−=

• If x0 is greater than 0, then  it is in IC controlled 

region, else it is in BC controlled region. If in IC 

controlled region  

)(),( 00 xTtxT =

• If (x,t) is in BC controlled region, get t0 by putting 

x0 = 0 and then T (x,t) can be obtained as 

u

x
tt −=0

and  )(),( 00 tTtxT =

Method of Characteristics - IV 
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Forward Marching 

t 

x 

• Originate points at the initial and boundary axes 

• March along path line generating interior nodes 

• The grids may not be 

equi-distant if u is not a 
constant,  

• The temperatures are 

computed using 

Compatibility equation 

• Considered most accurate, 

but difficult to program for 

complex cases. Not popular. 
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Backward Marching 

Numerical MOC - II 

• This method is to help formulating the method 

for a structured grid 

• By its nature, it involves interpolations across 

the characteristic if the slopes of the 

characteristic lines are not same. 

• This is the main cause of numerical diffusion. 

• This method establishes connections with the 

schemes already described. 
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x 

t 

• First let us consider the uniform velocity case 

• If we choose u∆t = ∆x, then, the characteristic 

passes from (i-1, n) to (I, n+1) exactly. 

• This implies that T = constant along these and 

we get exact solution. 

Numerical MOC - III 
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• If the velocity is not uniform, then the 

characteristic, when back projected does not 

exactly pass through a grid point 

• Compatibility implies that TB =TA 

• Since point A does not exist in computational 

grid, we need to interpolate 
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This is first order upwind scheme 

Numerical MOC - IV 
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• If we interpolate linearly using i+1 and i-1, we 

get the following 
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This is Lax scheme 
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Numerical MOC - IV 
• If we interpolate Second 

order curve using i+1, i and 

i-1, we get the following 
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scheme 

If origin is taken at x(i,n)  
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