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ME 704 1735

Computational Methods in Thermal
and Fluids Engineering

Solution of Hyperbolic Equation
(Convection Equation)

““Tréatment of Hyperbolic Equations“T”

O We have seen that the Parabolic and elliptic
equations posed no special difficulty

Q Both FTCS and BTCS were very well behaved,
though there was a time step restriction in
FTCS.

O However, hyperbolic equations have to be
carefully handled

QO Using schemes that violate the domain of
dependence, can produce severe violations

O We had already seen earlier that convection
equation was a hyperbolic equation. Let us go
back
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Analytical Solution
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Forward-Time Centered-Space

Method
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* Nodal Equation becomes
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* Nodal Equation becomes
Al
TinJrl =0'5(Ti21 +Ti[ll)+ — (T, _Ti[ll)
2Ax

i+l

+ Consistency Analysis gives
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Lax Scheme - |
a_T ' = Tim1 —0.5(T%, +T7) a_T ' _ T - T
ot |; At ox |, 2Ax
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Lax Scheme - I
 MPDE can be rewritten as
T, +uT, = 0.5qu(% —C)TXX e (1-c?)r,, +HOT

Ax?

* Method is o(At,—)
At

» Conditionally stable for c<1
» Exact for c=1
+ Diffusive for C<1

» As C approaches 0 dissipation would increase

A 2
Tl+uTx=(0.5 X —O.SuZAt]TXX
At Inconsistent
2 3A 2
| uAxT_wAC ot
3
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Lax Scheme
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Lax Scheme
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First Order Upwind Scheme - |
a_Tn = _Tim - T a_Tn _T =T forus0
ot |, At ox|, Ax

* Nodal Equation becomes
Tin+l — Tin _ C(Tin _ Tilll)

+ Consistency Analysis gives

T, +uT, = (0.5uAx —0.50>At)T,,

Consistent
_|_(u3At2 u’AxAt 3 w’Ax?

T, +HOT
30 2
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First Order Upwind Scheme- Il

» MPDE can be rewritten as

2
BAX (Loc? +3C 1), + HOT

XXX

T, +uT, =0.5uAx(1-C)T, +

Method is O(At, Ax)
Conditionally stable for C<1
Exact for C=1

Diffusive for C<1

As C approaches 0 dissipation would increase
but is bounded unlike in Lax
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First Order Upwind
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First Order Upwind
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Second Order Upwind Scheme -I

» First order method can be modified as
suggested by its MPDE as follows

« To turn off the unwanted diffusion, let us solve
for the modified equation

T, +uT, =-0.5uAx(1-C)T,,

» The finite difference form of the above equation
may be written as
7—;n+1 _7—;n 7—;n _7—;:
+u
At Ax
mm) *© Nodal Equation becomes

= —lqu(l—C) Tz _2’1:‘—; +’1;-2
2 Ax

i

it C(Y}" —];fl)+%C(C—l)(7§" —-217, +sz)
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Second Order Upwind Scheme - |l

» Consistency Analysis gives

T, +uT, = %(HAXZ —0.5u”AxAt + % u3At2ij +HOT Consistent
= T +uT, =%qu2(1—o.5c+%cijm +HOT

« Method is O(At*, AxAt,Ax?)
» Conditionally stable for C<2
 Less diffusive as leading diffusion term turned off
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Second Order Upwind
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Lax-Wendroff Scheme

» Taylor Series can be used to devise a second
order scheme for Convection Equation

n At

Tl =7 = o(ae?)

CAt+T,

i

?)At+u2Tn

» This can be expressed in the finite difference

n+ n C n n
T, 1=Ti _E(Tm_TH

= =7+, ;’%’2+0(Az3)

i+l

)+%2(Tn —2T"+T", )+ HOT
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Lax-Wendroff Scheme (Cont’d)

+ Consistency Analysis gives Consistent

T, +uT, =—é(qu2 —u3At2) T —%(uzszAt—u4At3) T, . THOT

XXXX

=) Tl+uTx=—%qu2(1—C2)Tm—%uA)fC(Cz—l)T +HOT

XXXX

* Method is

+ Conditionally stable forC<1

O(At*,Ax?)

+ Less diffusive as leading diffusion term is of
fourth order

» Exact for C=1
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Lax-Wendroff
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Lax-Wendroff
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Backward-Time Centered-Space
Method - |
or[™ _ 1 -1 L

o, M x|, 2Ax
* Nodal Equation becomes
T T + E(Tiﬁrl -7 =0 where C= uAf
2 AX
S S A R
2 2

+ Can Solve by TDMA

7*""Backward-Time Centered-Space’”*"

Method - lI

+ Consistency Analysis gives
T +uT, = %uzAtTH —(équz +%u3At2j T.. +HOT

Dissipating Dispersive

Method is O(Af, Ax?)
1
1+ ISin @

* Von Neumann analysis gives G =

Unconditionally stable

For a given Ax, as At increases (C increases), the
diffusion as well as will increase

Ax = 0.05 cm

9:50 PM 23/35
100 4 ® c= 0.
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Scheme ‘% un ot e
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100 ~ ® c=~ 0.1
X ec= 05
O c¢c= 0.9
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The General Observations

We generally notice that in most explicit schemes
the solution is exact for C = 1

There is numerical diffusion introduced in these
schemes for C other than 1

Though we are able to do consistency analysis
and understand the nature of the schemes, no
physical explanation was foreseeable

A lot of insight can be obtained by considering the
method of characteristics

» We shall look at the method in the following slides
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Method of Characteristics - |
* MOC is a technique by which a PDE is reduced
by one independent coordinate

+ By this method, 1-D transient PDE can be reduced
to an ODE along the characteristic directions

» Since T = T(x,t), using chain rule assuming
continuity of T, we can write
oT oT dr _dT N oT dx

9:50 PM < . 27/35

Method of Characteristics - Il *”/

» The first equation describes the spatial variation of
field variable T along the characteristic direction

» Thus, the PDE has been split into two ODEs, one
being characteristic direction and the other the

compatibility condition
Characteristic direction

» For linear convection
equation the point on
the downstream of t
characteristic can only
be influenced by the
X

state of upstream points
along the direction

T=""_ - &4 e
d ot di+ ox dx = dt ot Ox dt
» The governing equation is
oT oT
—+u—=0
ot ox
» From the above two equations, we can write
dT dx
—=0 along —=u
t dt
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"Method of Characteristics - Il **/

» The analytical solution using MOC technique can
be visualized as follows

* Integration of the characteristic equation with x = x,
att=t, gives

jdx:ujdt =>x=x,+u(t—t,)

Xo 0

T Controlled
by BC

d_T:0:>T:T Along the
dt 0 Characteristic

T Cgntrolled by IC

10/1/2011



72" "Method of Characteristics - IV 2%/°°

+ Analytical procedure will be to first get x, by putting
to, = 0, for the point of interest (x,t) from the equation
of path line

Xy =x—u(t—t,)

* If x, is greater than 0, then itis in IC controlled
region, else it is in BC controlled region. If in IC
controlled region

T(x,t)=T,(x,)

 If (x,t) is in BC controlled region, get t, by putting
Xo = 0 and then T (x,t) can be obtained as

[0:[—1 and T(x,t)=T,(,)

u
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Numerical MOC - |

Forward Marching

+ Originate points at the initial and boundary axes

* March along path line generating interior nodes
computed using

» The grids may not be
t
Compatibility equation

30/35

equi-distant if u is not a
constant,

» The temperatures are

» Considered most accurate, X

but difficult to program for

complex cases. Not popular.
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Numerical MOC - Il

Backward Marching

» This method is to help formulating the method
for a structured grid

+ By its nature, it involves interpolations across
the characteristic if the slopes of the
characteristic lines are not same.

 This is the main cause of numerical diffusion.

« This method establishes connections with the
schemes already described.

9:50 PM .
Numerical MOC - 1|
« First let us consider the uniform velocity case

« |f we choose uAt = Ax, then, the characteristic
passes from (i-1, n) to (I, n+1) exactly.

» This implies that T = constant along these and
we get exact solution.

W x

32/35

10/1/2011



7P Numerical MOC - IV 9

« If the velocity is not uniform, then the
characteristic, when back projected does not
exactly pass through a grid point

» Compatibility implies that Tg =T,

+ Since point A does not exist in computational
grid, we need to interpolate

R0 Numerical MOC - IV 34/35

« If we interpolate linearly using i+1 and i-1, we
get the following

TB =7win+l=TA

i~ Ty X=X, X, X +X,—X, Ax+uAt 1+C

T -TL x—xg Xiv1 — X 2Ax 2
n n 1+C n n 1+C

:>Ti+1_Ti+l=T(Ti+l_Ti‘l) 2Ti“+l=Tiil_ B (iil_Tin—l)

! N TL+T, Clrn N
B =T +1:%_5(T1+1_T1—1)

n+1

This is Lax scheme

b <—>AX n+ n n n &C
T, =1 =1, =17 =1 -T2 )
ned B Since 6x=uAt
n+l n n n uAt
T, =T =T, =17 - (1 -1/, )“>
n Ax
37 7 7
8% This is first order upwind scheme
i-1 P .. . x
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Numerical MOC - IV
« If we interpolate Second '
order curve using i+1, i and B
. . n+l
i-1, we get the following
Let T(x)=a+bx+cx’ A
n
If origin is taken at x(i,n) N G L T
:>a=7;”, szHI_Ti—l’ C=Ti+l_2Tiz+7;—l 1 P i
2Ax 2Ax
:>T(x)=T[.”+7;” _7;—1 X+ Ti+1_27; 2+7;—1 X2
2Ax 2Ax
Putting x = x,= -uMt, T(x)= T,=T, =T""'
N T[_n+1 =T" - L, =T, uAf + T, = 2T, 2+ T (MAZ)Z
2Ax 2Ax

™ —T" T —2T"+T" This is Lax-Wendroff
= Tin+l — Ti" _ il 5 i-1 C+ i+l i i-1 CZ scheme
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