

Treatment of Hyperbolic Equations ${ }^{2 / 2}$ - ${ }^{5}$
We have seen that the Parabolic and elliptic equations posed no special difficulty

- Both FTCS and BTCS were very well behaved, though there was a time step restriction in FTCS.
- However, hyperbolic equations have to be carefully handled
U Using schemes that violate the domain of dependence, can produce severe violations
\square We had already seen earlier that convection equation was a hyperbolic equation. Let us go back

Forward-Time Centered-Space Method

$$
\left.\frac{\partial T}{\partial t}\right|_{i}{ }_{i}^{n}=\left.\frac{T_{i}^{n+1}-T_{i}^{n}}{\Delta t} \quad \frac{\partial T}{\partial x}\right|_{i} ^{n}=\frac{T_{i+1}^{n}-T_{i-1}^{n}}{2 \Delta x}
$$

- Nodal Equation becomes

$$
T_{i}^{n+1}=T_{i}^{n}-\frac{C}{2}\left(T_{i+1}^{n}-T_{i-1}^{n}\right) \quad \text { where } C=\frac{u \Delta t}{\Delta x}
$$

- Consistency Analysis

$$
\mathrm{T}_{\mathrm{t}}+\mathrm{uT} \mathrm{~T}_{\mathrm{x}}=-\frac{1}{2} \mathrm{u}^{2} \Delta \mathrm{tT}_{\mathrm{xx}}-\left(\frac{1}{6} \mathrm{u} \Delta \mathrm{x}^{2}+\frac{1}{3} \mathrm{u}^{3} \Delta \mathrm{t}^{2}\right) \mathrm{T}_{\mathrm{xxx}}+\text { HOT }
$$

Amplifying Dispersive

Lax Scheme - II \quad 7/35

9:50 PM 10/35
First Order Upwind Scheme - I

$$
\left.\frac{\partial T}{\partial t}\right|_{i} ^{n}=\left.\frac{T_{i}^{n+1}-T_{i}^{n}}{\Delta t} \quad \frac{\partial T}{\partial x}\right|_{i} ^{n}=\frac{T_{i}^{n}-T_{i-1}^{n}}{\Delta x} \text { for } u>0
$$

- Nodal Equation becomes

$$
T_{i}^{n+1}=T_{i}^{n}-C\left(T_{i}^{n}-T_{i-1}^{n}\right)
$$

- Consistency Analysis gives
$T_{t}+u T_{x}=\left(0.5 u \Delta x-0.5 u^{2} \Delta t\right) T_{x x}$

$$
+\left(\frac{\mathrm{u}^{3} \Delta \mathrm{t}^{2}}{3} \frac{\mathrm{u}^{2} \Delta \mathrm{x} \Delta \mathrm{t}}{2}-\frac{\mathrm{u}^{3} \Delta \mathrm{x}^{2}}{6}\right) \mathrm{T}_{\mathrm{xxx}}+\text { HOT }
$$

Second Order Upwind Scheme -I

- First order method can be modified as suggested by its MPDE as follows
- To turn off the unwanted diffusion, let us solve for the modified equation

$$
\mathrm{T}_{\mathrm{t}}+\mathrm{uT} \mathrm{x}_{\mathrm{x}}=-0.5 \mathrm{u} \Delta \mathrm{x}(1-\mathrm{C}) \mathrm{T}_{\mathrm{xx}}
$$

- The finite difference form of the above equation may be written as $\frac{T_{i}^{n+1}-T_{i}^{n}}{\Delta t}+u \frac{T_{i}^{n}-T_{i-1}^{n}}{\Delta x}=-\frac{1}{2} u \Delta x(1-C) \frac{T_{i}^{n}-2 T_{i-1}^{n}+T_{i-2}^{n}}{\Delta x^{2}}$
\longrightarrow • Nodal Equation becomes
$T_{i}^{n+1}=T_{i}^{n}-C\left(T_{i}^{n}-T_{i-1}^{n}\right)+\frac{1}{2} C(C-1)\left(T_{i}^{n}-2 T_{i-1}^{n}+T_{i-2}^{n}\right)$

9:50 PM

17/35

Lax-Wendroff Scheme

- Taylor Series can be used to devise a second order scheme for Convection Equation

$$
\begin{aligned}
& \mathrm{T}_{\mathrm{i}}^{\mathrm{n+1}}=\mathrm{T}_{\mathrm{i}}^{\mathrm{n}}+\mathrm{T}_{\left.t\right|_{\mathrm{i}}}^{\mathrm{n}} \Delta \mathrm{t}+\mathrm{T}_{t| |_{\mathrm{i}}} \frac{\Delta \mathrm{t}^{2}}{2}+\mathrm{O}\left(\Delta \mathrm{t}^{3}\right) \\
\Rightarrow & T_{i}^{n+1}=T_{i}^{n}+\left(-u T_{x}^{n}\right) \Delta t+\left.u^{2} T_{x x}\right|_{i} ^{n} \frac{\Delta t^{2}}{2}+O\left(\Delta t^{3}\right)
\end{aligned}
$$

- This can be expressed in the finite difference

$$
T_{i}^{n+1}=T_{i}^{n}-\frac{C}{2}\left(T_{i+1}^{n}-T_{i-1}^{n}\right)+\frac{C^{2}}{2}\left(T_{i+1}^{n}-2 T_{i}^{n}+T_{i-1}^{n}\right)+\text { HOT }
$$

Lax-Wendroff Scheme (Cont'd)

- Consistency Analysis gives

Consistent
$T_{1}+u T_{x}=-\frac{1}{6}\left(u \Delta x^{2}-u^{3} \Delta t^{2}\right) T_{x x x}-\frac{1}{8}\left(u^{2} \Delta x^{2} \Delta t-u^{4} \Delta t^{3}\right) T_{x x x}+$ HOT
$\Rightarrow T_{t}+u T_{x}=-\frac{1}{6} u \Delta x^{2}\left(1-C^{2}\right) T_{x x x}-\frac{1}{8} u \Delta x^{3} C\left(C^{2}-1\right) T_{x x x x}+H O T$

- Method is $\mathrm{O}\left(\Delta \mathrm{t}^{2}, \Delta \mathrm{x}^{2}\right)$
- Conditionally stable for $\mathrm{C} \leq 1$
- Less diffusive as leading diffusion term is of fourth order
- Exact for $\mathrm{C}=1$
9:50 PM Backward-Time Centered-Space ${ }^{21 / 35}$
Method -1

$$
\left.\frac{\partial T}{\partial t}\right|_{i} ^{n+1}=\left.\frac{T_{i}^{n+1}-T_{i}^{n}}{\Delta t} \quad \frac{\partial T}{\partial x}\right|_{i} ^{n+1}=\frac{T_{i+1}^{n+1}-T_{i-1}^{n+1}}{2 \Delta x}
$$

- Nodal Equation becomes
$T_{i}^{n+1}-T_{i}^{n}+\frac{C}{2}\left(T_{i+1}^{n+1}-T_{i-1}^{n+1}\right)=0$ where $\quad \mathrm{C}=\frac{\mathrm{u} \Delta \mathrm{t}}{\Delta \mathrm{x}}$

$$
\frac{C}{2} T_{i+1}^{n+1}+T_{i}^{n+1}-\frac{C}{2} T_{i-1}^{n+1}=T_{i}^{n}
$$

- Can Solve by TDMA

9:50 PBackward-Time Centered-Space ${ }^{22 / 35}$ Method - II

- Consistency Analysis gives

$$
T_{t}+u T_{x}=\frac{1}{2} u^{2} \Delta t T_{x x}-\left(\frac{1}{6} u \Delta x^{2}+\frac{1}{3} u^{3} \Delta t^{2}\right) T_{x x x}+H O T
$$

Dissipating Dispersive

- Method is $O\left(\Delta t, \Delta x^{2}\right)$
- Von Neumann analysis gives $G=\frac{1}{1+I \operatorname{Sin} \theta}$
- Unconditionally stable
- For a given Δx, as Δt increases (C increases), the diffusion as well as will increase

:50 PM The General Observations

- We generally notice that in most explicit schemes the solution is exact for $\mathrm{C}=1$
- There is numerical diffusion introduced in these schemes for C other than 1
- Though we are able to do consistency analysis and understand the nature of the schemes, no physical explanation was foreseeable
- A lot of insight can be obtained by considering the method of characteristics
- We shall look at the method in the following slides

Method of Characteristics - II

- The first equation describes the spatial variation of field variable T along the characteristic direction
- Thus, the PDE has been split into two ODEs, one being characteristic direction and the other the compatibility condition
- For linear convection equation the point on the downstream of characteristic can only be influenced by the state of upstream points along the direction

Characteristic direction

x

Method of Characteristics - I

26/35

- MOC is a technique by which a PDE is reduced by one independent coordinate
- By this method, 1-D transient PDE can be reduced to an ODE along the characteristic directions
- Since $T=T(x, t)$, using chain rule assuming continuity of T , we can write

$$
d T=\frac{\partial T}{\partial t} d t+\frac{\partial T}{\partial x} d x \quad \Rightarrow \frac{d T}{d t}=\frac{\partial T}{\partial t}+\frac{\partial T}{\partial x} \frac{d x}{d t}
$$

- The governing equation is

$$
\frac{\partial T}{\partial t}+u \frac{\partial T}{\partial x}=0
$$

- From the above two equations, we can write

$$
\frac{d T}{d t}=0 \text { along } \frac{d x}{d t}=u
$$

P:50 PM Method of Characteristics - III

- The analytical solution using MOC technique can be visualized as follows
- Integration of the characteristic equation with $\mathrm{x}=\mathrm{x}_{0}$ at $\mathrm{t}=\mathrm{t}_{0}$ gives
$\int_{x_{0}}^{x} d x=u \int_{t_{0}}^{t} d t \Rightarrow x=x_{0}+u\left(t-t_{0}\right)$
$\frac{d T}{d t}=0 \Rightarrow T=T_{0} \quad \begin{aligned} & \text { Along the } \\ & \text { Characteristic }\end{aligned}$

${ }^{9.50 \text { P }}$ Method of Characteristics - IV ${ }^{29 / 35}$

- Analytical procedure will be to first get x_{0} by putting $\mathrm{t}_{0}=0$, for the point of interest (x, t) from the equation of path line

$$
x_{0}=x-u\left(t-t_{0}\right)
$$

- If x_{0} is greater than 0 , then it is in IC controlled region, else it is in BC controlled region. If in IC controlled region

$$
T(x, t)=T_{0}\left(x_{0}\right)
$$

- If (x, t) is in $B C$ controlled region, get t_{0} by putting $\mathrm{x}_{0}=0$ and then $\mathrm{T}(\mathrm{x}, \mathrm{t})$ can be obtained as

$$
t_{0}=t-\frac{x}{u} \quad \text { and } \quad T(x, t)=T_{0}\left(t_{0}\right)
$$

Forward Marching

- Originate points at the initial and boundary axes
- March along path line generating interior nodes
- The grids may not be
equi-distant if u is not a constant,
- The temperatures are computed using
Compatibility equation
- Considered most accurate,
 but difficult to program for complex cases. Not popular.

9:50 PM Numerical MOC - Il 31/35
 Numerical MOC - II

Backward Marching

- This method is to help formulating the method for a structured grid
- By its nature, it involves interpolations across the characteristic if the slopes of the characteristic lines are not same.
- This is the main cause of numerical diffusion.
- This method establishes connections with the schemes already described.

30/35

9:50 PM

Numerical MOC - I

9:50 PM
 Numerical MOC - III

- First let us consider the uniform velocity case
- If we choose $u \Delta t=\Delta x$, then, the characteristic passes from (i-1, n) to ($1, n+1$) exactly.
- This implies that $\mathrm{T}=$ constant along these and we get exact solution.

9:50 PM

Numerical MOC - IV

33/35

- If the velocity is not uniform, then the characteristic, when back projected does not exactly pass through a grid point
- Compatibility implies that $T_{B}=T_{A}$
- Since point A does not exist in computational grid, we need to interpolate

$T_{B}=T_{i}^{n+1}=T_{A}=T_{i}^{n}-\left(T_{i}^{n}-T_{i-1}^{n}\right) \frac{\delta x}{\Delta x}$ Since $\delta \mathrm{x}=\mathrm{u} \Delta \mathrm{t}$
$T_{B}=T_{i}^{n+1}=T_{A}=T_{i}^{n}-\left(T_{i}^{n}-T_{i-1}^{n}\right) \frac{u \Delta t}{\Delta x}$
This is first order upwind scheme

9:50 PM

Numerical MOC - IV

- If we interpolate linearly using $i+1$ and $i-1$, we get the following
$T_{B}=T_{i}^{n+1}=T_{A}$
$\frac{T_{i+1}^{n}-T_{A}}{T_{i+1}^{n}-T_{i-1}^{n}}=\frac{x_{i+1}-x_{A}}{x_{i+1}-x_{i-1}}=\frac{x_{i+1}-x_{i}+x_{i}-x_{A}}{x_{i+1}-x_{i-1}}=\frac{\Delta x+u \Delta t}{2 \Delta x}=\frac{1+C}{2}$
$\Rightarrow \mathrm{T}_{\mathrm{i}+1}^{\mathrm{n}}-\mathrm{T}_{\mathrm{i}}^{\mathrm{n}+1}=\frac{1+\mathrm{C}}{2}\left(\mathrm{~T}_{\mathrm{i}+1}^{\mathrm{n}}-\mathrm{T}_{\mathrm{i}-1}^{\mathrm{n}}\right) \Rightarrow \mathrm{T}_{\mathrm{i}}^{\mathrm{n+1}}=\mathrm{T}_{\mathrm{i}+1}^{\mathrm{n}}-\frac{1+\mathrm{C}}{2}\left(\mathrm{~T}_{\mathrm{i}+1}^{\mathrm{n}}-\mathrm{T}_{\mathrm{i}-1}^{\mathrm{n}}\right)$

Numerical MOC - IV
35/35

- If we interpolate Second order curve using $\mathrm{i}+1$, i and $\mathrm{i}-1$, we get the following Let $\quad T(x)=a+b x+c x^{2}$
If origin is taken at $\mathrm{x}(\mathrm{i}, \mathrm{n})$
$\Rightarrow a=T_{i}^{n} \quad b=\frac{T_{i+1}^{n}-T_{i-1}^{n}}{2 \Delta x}, \quad c=\frac{T_{i+1}^{n}-2 T_{i}^{n}+T_{i-1}^{n}}{2 \Delta x^{2}}$

$\Rightarrow T(x)=T_{i}^{n}+\frac{T_{i+1}^{n}-T_{i-1}^{n}}{2 \Delta x} x+\frac{T_{i+1}^{n}-2 T_{i}^{n}+T_{i-1}^{n}}{2 \Delta x^{2}} x^{2}$
Putting $x=x_{A}=-u \Delta t, T(x)=T_{A}=T_{B}=T_{i}^{n+1}$
$\Rightarrow T_{i}^{n+1}=T_{i}^{n}-\frac{T_{i+1}^{n}-T_{i-1}^{n}}{2 \Delta x} u \Delta t+\frac{T_{i+1}^{n}-2 T_{i}^{n}+T_{i-1}^{n}}{2 \Delta x^{2}}(u \Delta t)^{2}$
$\Rightarrow T_{i}^{n+1}=T_{i}^{n}-\frac{T_{i+1}^{n}-T_{i-1}^{n}}{2} C+\frac{T_{i+1}^{n}-2 T_{i}^{n}+T_{i-1}^{n}}{2} C^{2} \quad \begin{aligned} & \text { This is Lax-Wendroff } \\ & \text { scheme }\end{aligned}$

