M MOC for a Set of Equations

O We have studied the method of characteristics
for a single equation

O Now we shall extend this for a set of
equations

QO These find applications in Hydraulic Transients
as applied to surge or water hammer

O While we shall see the introduction, more on
it can be studied from Fluid transients by
Wiley and Streeter

a We shall start from the governing equations
we had derived in last lecture
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The Governing Equations-I

» Conservation of Mass
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Area Time

Gravitational acceleration Velocity

Elevation Spatial coordinate
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The Governing Equations-Il
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O Assuming thin cylinder theory, we can write
hoops stress as
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a The above relation connects the change of
area to a change in pressure
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The Governing Equations-IlI

Q In water hammer problems, the temperature
of the water remains constant and hence the
speed of sound can be defined as
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O Now we can write
a(pA): d(pA):pﬁ_FAd_p: Al p
dp dp dp dp
dp
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speed of sound due to elasticity of structure
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The Governing Equations-I1V

O Now we are ready to manipulate the
equations towards obtaining the solution

« Conservation of Mass can be modified as
follows
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The Governing Equations-V
O Conservation of Momentum Can be modified as
2
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O Dividing by pA and putting P/A = 4/D, we get
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The Governing Equations-VI

O In our classification lecture, we had taken a
special case where gravitational and frictional
effects were ignored, the equation set was
shown to be hyperbolic.

O The above two equations can be recast as
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U Using B-AA = 0, we can get
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O We will do the same by an alternate way
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% Method of Lagrange Multiplier “*

U IfL; =0and L, = 0 are the continuity and
momentum equations, then we can also write
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Method of Lagrange Multiplier
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O We can now state using the continuity concepts
discussed earlier that we can write the terms in
square parenthesis as total derivative along
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Method of Lagrange Multiplier-II
O Substituting for g

11/15

4
o Ldp dv :_( pVVf+gdHJ
pa dt dt

2D dx
Q Similarly,
Along d—XZV—ﬁ or ,b’z—@
dt a

1 dp dV 4pVV|f  dH
_i7+7:_ +g7
pa dt dt 2D dx

11:19 AM

10/15

Method of Lagrange Multiplier-I

O From Egs. (4) and (5) we can write
dx:(Y2+’BJ62 =V+ta
dt a P

O Now we can write the compatibility equations as
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Characteristic Grid

» From Every Point two characteristics emerge

» These represent the directions along which the
signals propagate and also represent directions
along which discontinuities might exist.

* In water hammer cases
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Numerical MOC

Q Since effective speed of sound is constant,
programming is easy.

O We can choose At such that 5’A7Ax =1 This
would imply that charcteristics from the
previous time step exactly pass through the
points in the next time step
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Numerical MOC
Q Solution for interior nodes
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Q The two unknowns,

viz., velocity and
pressure at new

found

time step can be ]
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Numerical MOC

O Treatment of Boundary conditions

O At boundary only one of the characteristic is
relevant

a We can find either p or v depending on what
is specified.
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