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MOC for a Set of Equations 
� We have studied the method of characteristics 

for a single equation 

� Now we shall extend this for a set of 
equations 

� These find applications in Hydraulic Transients 

as applied to surge or water hammer 

� While we shall see the introduction, more on 
it can be studied from Fluid transients by 

Wiley and Streeter 

� We shall start from the governing equations 
we had derived in last lecture 
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The Governing Equations-I 

A Area 

g Gravitational acceleration 

H Elevation 

P Perimeter 

p Pressure 

t Time 

V Velocity 

x Spatial coordinate 

ρ Density of fluid 

τw Wall shear stress 

• Conservation of Mass 
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� Assuming thin cylinder theory, we can write 

hoops stress as 
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The Governing Equations-II 

� The above relation connects the change of 

area to a change in pressure 
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The Governing Equations-III 

� In water hammer problems, the temperature 

of the water remains constant and hence the 
speed of sound can be defined as  
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� The above relation involves the modified 

speed of sound due to elasticity of structure 
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The Governing Equations-IV 
� Now we are ready to manipulate the 

equations towards obtaining the solution 

• Conservation of Mass can be modified as 

follows 
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� Conservation of Momentum Can be modified as  
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� Dividing by ρA and putting P/A = 4/D, we get 
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The Governing Equations-V 
11:19 AM 6/15 

The Governing Equations-VI 

� In our classification lecture, we had taken a 

special case where gravitational and frictional 

effects were ignored, the equation set was 

shown to be hyperbolic. 
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� The above two equations can be recast as 

� Using B-λA = 0, we can get 
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� We will do the same by an alternate way 
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Method of Lagrange Multiplier 

� If L1 = 0 and L2 = 0 are the continuity and 

momentum equations, then we can also write   
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Method of Lagrange Multiplier 
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� We can now state using the continuity concepts 

discussed earlier that we can write the terms in 

square parenthesis as total derivative along  

(4) 
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Method of Lagrange Multiplier-I 
� From Eqs. (4) and (5) we can write 
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� Now we can write the compatibility equations as 
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� Substituting for β 
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Method of Lagrange Multiplier-II 
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Characteristic Grid 
• From Every Point two characteristics emerge 

• These represent the directions along which the 

signals propagate and also represent directions 

along which discontinuities might exist. 

• In water hammer cases 
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� Since effective speed of sound is constant, 

programming is easy. 

Numerical MOC 
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� We can choose ∆t such that                 This 

would imply that charcteristics from the 
previous time step exactly pass through the 

points in the next time step  
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� Solution for interior nodes 

Numerical MOC 
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� The two unknowns, 

viz., velocity and 
pressure at new 

time step can be 

found 
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� Treatment of Boundary conditions 

� At boundary only one of the characteristic is 

relevant 

� We can find either p or v depending on what 
is specified. 

Numerical MOC 
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