MOC for a Set of Equations

1/15

- We have studied the method of characteristics for a single equation
. Now we shall extend this for a set of equations
- These find applications in Hydraulic Transients as applied to surge or water hammer
- While we shall see the introduction, more on it can be studied from Fluid transients by Wiley and Streeter
We shall start from the governing equations we had derived in last lecture

11:19 AM

The Governing Equations-II

$$
A=\frac{\pi D^{2}}{4} \Rightarrow d A=\frac{\pi 2 D}{4} d D \quad \Rightarrow \frac{d A}{A}=2 \frac{d D}{D}
$$

- Assuming thin cylinder theory, we can write hoops stress as
$\sigma=\frac{p D}{2 t} \quad \Rightarrow d \sigma \approx \frac{D}{2 t} d p \Rightarrow E d \varepsilon \approx \frac{D}{2 t} d p$
$\Rightarrow d \varepsilon \approx \frac{D}{2 t E} d p \quad d \varepsilon=\frac{d D}{D}$
$\Rightarrow \frac{d D}{D}=\frac{D}{2 t E} d p=\frac{1}{2} \frac{d A}{A} \quad \Rightarrow \frac{d A}{d p}=\frac{A D}{t E}=\frac{\pi D^{3}}{4 t E} \quad$ (3)
- The above relation connects the change of area to a change in pressure

11:1	The Governi Conservation of Ma $\frac{\partial \rho A}{\partial t}+\frac{\partial \rho A V}{\partial x}=0$ Conservation of Mo $\frac{\partial \rho A V}{\partial t}+\frac{\partial \rho A V^{2}}{\partial x}=$	Eq tum $\frac{\partial p}{\partial x}$	ations-I (1) ${ }_{w} P-\rho A g \frac{d H}{d x}$	2/1
A	Area	t	Time	
g	Gravitational acceleration	V	Velocity	
H	Elevation	x	Spatial coordinate	
P	Perimeter	ρ	Density of fluid	
p	Pressure	$\tau_{\text {w }}$	Wall shear stress	

11:1	The Governi Conservation of Ma $\frac{\partial \rho A}{\partial t}+\frac{\partial \rho A V}{\partial x}=0$ Conservation of Mo $\frac{\partial \rho A V}{\partial t}+\frac{\partial \rho A V^{2}}{\partial x}=$	Eq tum $\frac{\partial p}{\partial x}$	ations-I (1) ${ }_{w} P-\rho A g \frac{d H}{d x}$	2/1
A	Area	t	Time	
g	Gravitational acceleration	V	Velocity	
H	Elevation	x	Spatial coordinate	
P	Perimeter	ρ	Density of fluid	
p	Pressure	$\tau_{\text {w }}$	Wall shear stress	

The Governing Equations-I

- Conservation of Mass

$$
\begin{equation*}
\frac{\partial \rho A}{\partial t}+\frac{\partial \rho A V}{\partial x}=0 \tag{1}
\end{equation*}
$$

- Conservation of Momentum

$$
\frac{\partial \rho A V}{\partial t}+\frac{\partial \rho A V^{2}}{\partial x}=-A \frac{\partial p}{\partial x}-\tau_{w} P-\rho A g \frac{d H}{d x}
$$

11:19 AM
 The Governing Equations-III

In water hammer problems, the temperature of the water remains constant and hence the speed of sound can be defined as

$$
\frac{\partial p}{\partial \rho}=\frac{d p}{d \rho}=a^{2}
$$

Now we can write

$$
\begin{gathered}
\frac{\partial(\rho A)}{\partial p}=\frac{d(\rho A)}{d p}=\rho \frac{d A}{d p}+A \frac{d \rho}{d p}=A\left(\rho \frac{1}{A} \frac{d A}{d p}+\frac{d \rho}{d p}\right) \\
\therefore \frac{d(\rho A)}{d p}=A\left(\rho \frac{1}{A} \frac{d A}{d p}+\frac{1}{a^{2}}\right)=\frac{A}{\hat{a}^{2}}
\end{gathered}
$$

- The above relation involves the modified speed of sound due to elasticity of structure

${ }^{1.19 \mathrm{AM}}$ The Governing Equations-IV

- Now we are ready to manipulate the equations towards obtaining the solution
- Conservation of Mass can be modified as follows

$$
\frac{\partial \rho A}{\partial t}+\frac{\partial \rho A V}{\partial x}=0 \quad \Rightarrow \frac{d(\rho A)}{d p} \frac{\partial p}{\partial t}+V \frac{\partial \rho A}{\partial x}+\rho A \frac{\partial V}{\partial x}=0
$$

$$
\frac{d(\rho A)}{d p} \frac{\partial p}{\partial t}+V \frac{d(\rho A)}{d p} \frac{\partial p}{\partial x}+\rho A \frac{\partial V}{\partial x}=0
$$

$$
\frac{d(\rho A)}{d p}\left(\frac{\partial p}{\partial t}+V \frac{\partial p}{\partial x}\right)+\rho A \frac{\partial V}{\partial x}=0
$$

$$
\frac{A}{\hat{a}^{2}}\left(\frac{\partial p}{\partial t}+V \frac{\partial p}{\partial x}\right)+\rho A \frac{\partial V}{\partial x}=0 \Rightarrow \frac{1}{\hat{a}^{2}}\left(\frac{\partial p}{\partial t}+V \frac{\partial p}{\partial x}\right)+\rho \frac{\partial V}{\partial x}=0
$$

The Governing Equations-VI

- In our classification lecture, we had taken a special case where gravitational and frictional effects were ignored, the equation set was shown to be hyperbolic.
\square The above two equations can be recast as $\left[\begin{array}{cc}\frac{1}{\hat{a}^{2}} & 0 \\ 0 & 1\end{array}\right] \frac{\partial}{\partial t}\left\{\begin{array}{c}p \\ V\end{array}\right\}+\left[\begin{array}{cc}\frac{V}{\widehat{a}^{2}} & \rho \\ \frac{1}{\rho} & V\end{array}\right] \frac{\partial}{\partial x}\left\{\begin{array}{c}p \\ V\end{array}\right\}=\left\{\frac{-4 f V|V|}{2 D}-g \frac{d H}{d x}\right\}$
\square Using $B-\lambda A=0$, we can get

$$
\Rightarrow \lambda=V \pm \hat{a}=\frac{d x}{d t}
$$

We will do the same by an alternate way

The Governing Equations-V

- Conservation of Momentum Can be modified as

$$
\frac{\partial \rho A V}{\partial t}+\frac{\partial \rho A V^{2}}{\partial x}=-A \frac{\partial p}{\partial x}-\tau_{w} P-\rho A g \frac{d H}{d x}
$$

$\rho A \frac{\partial V}{\partial t}+\rho A V \frac{\partial V}{\partial x}+\left(V\left[\frac{\partial \rho A}{\partial t}+V \frac{\partial \rho A V}{\partial x}\right]\right)=-A \frac{\partial p}{\partial x}-\tau_{w} P-\rho A g \frac{d H}{d x}$

$$
\rho A \frac{\partial V}{\partial t}+\rho A V \frac{\partial V}{\partial x}+A \frac{\partial p}{\partial x}=\frac{-1}{2} \rho V|V| f P-\rho A g \frac{d H}{d x}
$$

\square Dividing by ρA and putting $P / A=4 / D$, we get

$$
\frac{\partial V}{\partial t}+V \frac{\partial V}{\partial x}+\frac{1}{\rho} \frac{\partial p}{\partial x}=-\frac{4 V|V| f}{2 D}-g \frac{d H}{d x}
$$

${ }^{11.19 \text { A }}$ Method of Lagrange Multiplier

\square If $L_{1}=0$ and $L_{2}=0$ are the continuity and momentum equations, then we can also write

$$
\begin{array}{r}
L_{1}+\beta L_{2} \\
\Rightarrow \frac{1}{\widehat{a}^{2}}\left(\frac{\partial p}{\partial t}+V \frac{\partial p}{\partial x}\right)+\rho \frac{\partial V}{\partial x}+ \\
\beta\left(\frac{\partial V}{\partial t}+V \frac{\partial V}{\partial x}+\frac{1}{\rho} \frac{\partial p}{\partial x}+\frac{4 \rho V|V| f}{2 D}+g \frac{d H}{d x}\right)=0 \\
\Rightarrow \frac{1}{\widehat{a}^{2}} \frac{\partial p}{\partial t}+\frac{\partial p}{\partial x}\left(\frac{V}{\widehat{a}^{2}}+\frac{\beta}{\rho}\right)+\beta \frac{\partial V}{\partial t}+(\rho+\beta V) \frac{\partial V}{\partial x}+ \\
\beta\left(\frac{4 \rho V|V| f}{2 D}+g \frac{d H}{d x}\right)=0
\end{array}
$$

$\sqrt{11: 19} \mathrm{AM}$ Method of Lagrange Multiplier
 $$
\begin{array}{r} \Rightarrow \frac{1}{\widehat{a}^{2}}\left[\frac{\partial p}{\partial t}+\frac{\partial p}{\partial x}\left(\frac{V}{\widehat{a}^{2}}+\frac{\beta}{\rho}\right) \widehat{a}^{2}\right]+\beta\left[\frac{\partial V}{\partial t}+\frac{(\rho+\beta V)}{\beta} \frac{\partial V}{\partial x}\right]+ \\ \beta\left(\frac{4 \rho V|V| f}{2 D}+g \frac{d H}{d x}\right)=0 \end{array}
$$

- We can now state using the continuity concepts discussed earlier that we can write the terms in square parenthesis as total derivative along

$$
\begin{aligned}
\quad \frac{d x}{d t}=\left(\frac{V}{\widehat{a}^{2}}+\frac{\beta}{\rho}\right) \widehat{a}^{2}=\frac{(\rho+\beta V)}{\beta}=\lambda \\
\Rightarrow V+\frac{\beta}{\rho} \widehat{a}^{2}=\frac{\rho}{\beta}+V \Rightarrow \beta^{2}=\frac{\rho^{2}}{\widehat{a}^{2}} \quad \Rightarrow \beta= \pm \frac{\rho}{\hat{a}}
\end{aligned}
$$

Method of Lagrange Multiplier-I

\square From Eqs. (4) and (5) we can write

$$
\frac{d x}{d t}=\left(\frac{V}{\widehat{a}^{2}}+\frac{\beta}{\rho}\right) \widehat{a}^{2}=V \pm \widehat{a}
$$

\square Now we can write the compatibility equations as
Along $\frac{d x}{d t}=V+\hat{a}$ or $\beta=\frac{\rho}{\hat{a}}$

$$
\begin{aligned}
& \Rightarrow \frac{1}{\hat{a}^{2}} \frac{d p}{d t}+\beta \frac{d V}{d t}+\beta\left(\frac{4 \rho V|V| f}{2 D}+g \frac{d H}{d x}\right)=0 \\
& \Rightarrow \frac{1}{\widehat{a}^{2} \beta} \frac{d p}{d t}+\frac{d V}{d t}=-\left(\frac{4 \rho V|V| f}{2 D}+g \frac{d H}{d x}\right)
\end{aligned}
$$

11:19 AM

Characteristic Grid

- From Every Point two characteristics emerge
- These represent the directions along which the signals propagate and also represent directions along which discontinuities might exist.
- In water hammer cases

$$
V \ll \widehat{a} \Rightarrow \frac{d t}{d x}= \pm \frac{1}{\hat{a}}
$$

11:19 AM

Numerical MOC

13/15
\square Since effective speed of sound is constant, programming is easy.
\square We can choose Δt such that $\hat{a} \Delta t / \Delta x=1$ This would imply that charcteristics from the previous time step exactly pass through the points in the next time step

1:19 AM \quad Numerical MOC

14/15

Solution for interior nodes
Along $\frac{d t}{d x}=\frac{1}{\widehat{a}} \Rightarrow \frac{1}{\rho \widehat{a}} \frac{p_{i}^{n+1}-p_{i-1}^{n}}{\Delta t}+\frac{V_{i}^{n+1}-V_{i-1}^{n}}{\Delta t}=R H S_{i-1}$
Along $\frac{d t}{d x}=-\frac{1}{\hat{a}} \Rightarrow-\frac{1}{\rho \widehat{a}} \frac{p_{i}^{n+1}-p_{i+1}^{n}}{\Delta t}+\frac{V_{i}^{n+1}-V_{i+1}^{n}}{\Delta t}=R H S_{i+1}$

The two unknowns, viz., velocity and pressure at new time step can be found

