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Final Set of Equations 
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MOC for Compressible Flows 

� We have studied the method of characteristics for 

water hammer equations 

� In that case the density was treated as constant 
except for accounting of sonic speed 

� However in compressible flows the assumption of 

constant density will not be valid. Since density is 
also dictated by temperature, energy equation has 

to be considered 

� However, the pipes can be treated as rigid and 

hence modified speed of sound need not be 
accounted 
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The Governing Equations-I 

• Conservation of Mass 
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• Conservation of Momentum 
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� We will study for constant area duct 

� The gravitational term can be neglected 

� We will neglect axial conduction in energy 

Equation 
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The Governing Equations-II 

� Conservation of energy can be written as 
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• We have assumed an insulated system 

• Axial conduction neglected 

• No shaft work 

� Expressing h = h(p,ρ), we can write 
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� Similarly, we can write 
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� To keep the notation simple, we shall define 
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The Governing Equations-III 
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� The first two terms of energy equation can now 

be written as 
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� Thus, the LHS of energy equation can now be 

written as 
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� Collecting terms and equating to RHS, we get 

The Governing Equations-IV 
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� Thus, the energy equation may be written as 
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� It can be shown that  
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� The final form of energy equation is 

(4) 

The Governing Equations-V 
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The Governing Equations-VI 
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� The energy equation is already in the characteristic 

form 

V
dt

dx
=

    along 

� To get the continuity and momentum in the 

characteristic form, in pressure and velocity, we do 

some algebraic manipulations. Eq. (4) gives, 
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� Where RHSE  is given by  

� Conservation of Mass (Eq. (1)) is rewritten as 

0=
∂

∂
+

∂

∂
+

∂

∂

x

V

x
V

t
ρ

ρρ
(6) 

� Eqs. (5) and (6) gives 
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The Governing Equations-VII 
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• Conservation of Momentum Eq. (2) is rewritten as 

0=+
∂

∂
+

∂

∂
+

∂

∂

A

P

x

p

x

V
V

t

V wτ
ρρ (8) 

• Using the Lagrange multiplier route as before 

Eq. (7)+β Eq. (8) = 0  implies 
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MOC-I 
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• The characteristic directions shall be given by 
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• The compatibility conditions are 
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MOC-III 

• Before proceeding further, let us summarise the 

modified governing equations 
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• The combined mass and momentum 

equations can be written as  
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� The energy equation is 
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• From every point three characteristics emerge 

• The directions 1/(V+a), 1/(V-a) are called Mach 

lines and the direction 1/V is called the path line 

• Just as in water hammer equations, the variation 

of pressure and velocity are computed from Mach 

lines 

 • The change in density 

is then computed from 

path lines 

• Let us look at the 

forward method, which 
is rather complex 

Forward Marching-I 
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• The values of x, t, p, V and ρ are assumed to be 

known at points 0, 1 and 2. Also, if p and ρ are 

known, so is ‘a’  
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Get x3 and t3 

• Using compatibility along 1-3 and 2-3, 

compute p3  and V3 similar to the method 

used in water hammer equations 

Forward Marching-II 
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• Using the following relations, we can determine xj ,Vj 

and tj 

• Using values of xj and parameters at 0 

and 1 compute, pj and ρj by linear 

interpolation . Using the compatibility  

along j-3, and known p3, pj and ρj we 

can find ρ3  

Forward Marching-III 
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• Boundary conditions are determined similarly 

• The logic is fairly tedious. 

Forward Marching-IV 
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• If the flow chokes at exit, Mach No must be set 

equal to one and pressure computed 
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Backward Marching-IV 

• This is designed for structured grid 
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Steps 

1. Compute ‘a' at 1 and 3 

2. Calculate coordinates of 5 and 7 
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3. Interpolate all variables to get them at 5 and 7   

4. Solve for p4 and V4  

5. Calculate x coordinate at 6 using 

6. Calculate ρ4 

7. Boundary conditions are solved for similarly 
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