1

2:34 F	^{2/18} MOC for Compressible Flows
	We have studied the method of characteristics for water hammer equations
	In that case the density was treated as constant except for accounting of sonic speed
	However in compressible flows the assumption of constant density will not be valid. Since density is also dictated by temperature, energy equation has to be considered
	However, the pipes can be treated as rigid and hence modified speed of sound need not be accounted

2:34 PM MOC-II	11/18			
The characteristic directions shall be given by				
$\frac{dx}{dt} = V + \frac{a^2}{\beta} = \beta + V = \lambda \qquad \Rightarrow \beta = \pm a$				
$\Rightarrow \frac{dx}{dt} = V \pm a$ • The compatibility conditions are				
$\Rightarrow \frac{dp}{dt} \pm a\rho \frac{dV}{dt} = RHS_E \pm a \frac{\tau_w P}{A} = 0, along \frac{dx}{dt} = V \pm a$				

2:34 F	MOC-III 12/18				
 Before proceeding further, let us summarise the modified governing equations 					
 The combined mass and momentum equations can be written as 					
	$\frac{dp}{dt} \pm a\rho \frac{dV}{dt} = RHS_E \pm a \frac{\tau_w P}{A} = 0, along \frac{dt}{dx} = \frac{1}{V \pm a}$				
The energy equation is					
	$\frac{dp}{dt} - a^2 \frac{d\rho}{dt} = RHS_E, along \frac{dt}{dx} = \frac{1}{V}$				

14/18

Forward Marching-I

- From every point three characteristics emerge
- The directions 1/(V+a), 1/(V-a) are called Mach lines and the direction 1/V is called the path line
- Just as in water hammer equations, the variation of pressure and velocity are computed from Mach lines

t

• The change in density is then computed from path lines

2:34 PM

· Let us look at the forward method, which is rather complex

13/18

^{2:34 PM} Forward Marching-II			
 The values of x, t, p, V and ρ are assumed to be known at points 0, 1 and 2. Also, if p and ρ are known, so is 'a' 			
$\frac{t_3 - t_1}{x_3 - x_1} = \frac{1}{V_1 + a_1} \qquad \frac{t_3 - t_2}{x_3 - x_2} = \frac{1}{V_2 - a_2} \text{Get } x_3 \text{ and } t_3$			
• Using compatibility along 1-3 and 2-3, compute p_3 and V_3 similar to the method used in water hammer equations	C- C+		

2:34 PM

^{2:34 PM} Forward Marching-III ^{15/18}						
- Using the following relations, we can determine \boldsymbol{x}_{j} ,V_{j} and \boldsymbol{t}_{j}						
$\frac{t_j - t_0}{x_j - x_0} = \frac{1}{V_0}$	$\frac{1}{-a_0} \qquad \frac{t_3 - t_j}{x_3 - x_j} = \frac{1}{V_j}$	$\frac{x_j - x_0}{x_1 - x_0} = \frac{V_j - V_0}{V_1 - V_0}$				
• Using values of x_j and parameters at 0 and 1 compute, p_j and ρ_j by linear interpolation . Using the compatibility along j-3, and known p_3 , p_j and ρ_j we can find ρ_3						

