2:34 PM

Final Set of Equations

Mass Balance $\quad \frac{\partial(A \rho)}{\partial t}+\frac{\partial(A \rho V)}{\partial s}=0$

Momentum Balance

$$
\rho \frac{\partial(V)}{\partial t}+\rho V \frac{\partial(V)}{\partial s}=-\frac{\partial p}{\partial s}-\tau_{w} \frac{P}{A}-\rho g \frac{\partial H}{\partial s}
$$

Energy Balance

$\rho A \frac{\partial h}{\partial t}+\rho A u \frac{\partial h}{\partial s}=V A \frac{\partial p}{\partial s}+A \frac{\partial p}{\partial t}+q_{\text {suuface }}^{\prime \prime} P-\frac{\partial\left(q_{\text {axial }}^{\prime \prime} A\right)}{\partial s}-W^{\prime}$

MOC for Compressible Flows

We have studied the method of characteristics for water hammer equations

- In that case the density was treated as constant except for accounting of sonic speed
- However in compressible flows the assumption of constant density will not be valid. Since density is also dictated by temperature, energy equation has to be considered
- However, the pipes can be treated as rigid and hence modified speed of sound need not be accounted

${ }^{2.34 \mathrm{PM}}$ The Governing Equations-I

. We will study for constant area duct

- The gravitational term can be neglected

We will neglect axial conduction in energy Equation

- Conservation of Mass

$$
\begin{equation*}
\frac{\partial \rho}{\partial t}+\frac{\partial \rho V}{\partial x}=0 \tag{1}
\end{equation*}
$$

- Conservation of Momentum
$\rho \frac{\partial V}{\partial t}+\rho V \frac{\partial V}{\partial x}+\frac{\partial p}{\partial x}=-\frac{\tau_{w} P}{A}$

The Governing Equations-II

- Conservation of energy can be written as

$$
\begin{equation*}
\rho \frac{\partial h}{\partial t}+\rho V \frac{\partial h}{\partial x}-\left(\frac{\partial p}{\partial t}+V \frac{\partial p}{\partial x}\right)=\frac{\tau_{w} P}{A} V+\frac{q^{\prime \prime} P}{A} \tag{3}
\end{equation*}
$$

- We have assumed an insulated system
- Axial conduction neglected
- No shaft work
- Expressing $\mathrm{h}=\mathrm{h}(\mathrm{p}, \rho)$, we can write

$$
\Delta h=\left.\frac{\partial h}{\partial p}\right|_{\rho} \Delta p+\left.\frac{\partial h}{\partial \rho}\right|_{p} \Delta \rho \quad \frac{\partial h}{\partial t}=\left.\frac{\partial h}{\partial p}\right|_{\rho} \frac{\partial p}{\partial t}+\left.\frac{\partial h}{\partial \rho}\right|_{p} \frac{\partial \rho}{\partial t}
$$

${ }^{2: 34 \mathrm{PM}}$ The Governing Equations-III

- Similarly, we can write

$$
\frac{\partial h}{\partial x}=\left.\frac{\partial h}{\partial p}\right|_{\rho} \frac{\partial p}{\partial x}+\left.\frac{\partial h}{\partial \rho}\right|_{p} \frac{\partial \rho}{\partial x}
$$

To keep the notation simple, we shall define

$$
\begin{aligned}
& \left.\frac{\partial h}{\partial p}\right|_{\rho}=h_{p},\left.\frac{\partial h}{\partial \rho}\right|_{p}=h_{\rho} \\
& \Rightarrow \frac{\partial h}{\partial t}=h_{p} \frac{\partial p}{\partial t}+h_{\rho} \frac{\partial \rho}{\partial t} \quad \text { and } \Rightarrow \frac{\partial h}{\partial \mathrm{x}}=h_{p} \frac{\partial p}{\partial \mathrm{x}}+h_{\rho} \frac{\partial \rho}{\partial \mathrm{x}}
\end{aligned}
$$

5/18

The Governing Equations-V

- Thus, the energy equation may be written as

$$
\left(\frac{\partial p}{\partial t}+V \frac{\partial p}{\partial x}\right)+\frac{\rho h_{\rho}}{\left(\rho h_{p}-1\right)}\left(\frac{\partial \rho}{\partial t}+V \frac{\partial \rho}{\partial x}\right)=\frac{1}{\left(\rho h_{p}-1\right)}\left(\frac{\tau_{w} P}{A} V+\frac{q^{\prime \prime} P}{A}\right)
$$

- It can be shown that

$$
\frac{\rho h_{\rho}}{\left(\rho h_{p}-1\right)}=-a^{2}
$$

The final form of energy equation is

$$
\begin{equation*}
\left(\frac{\partial p}{\partial t}+V \frac{\partial p}{\partial x}\right)-a^{2}\left(\frac{\partial \rho}{\partial t}+V \frac{\partial \rho}{\partial x}\right)=\frac{1}{\left(\rho h_{p}-1\right)}\left(\frac{\tau_{w} P}{A} V+\frac{q^{\prime \prime} P}{A}\right) \tag{4}
\end{equation*}
$$

${ }^{2.34 \mathrm{PM}}$ The Governing Equations-IV

- The first two terms of energy equation can now be written as

$$
\rho \frac{\partial h}{\partial t}+\rho V \frac{\partial h}{\partial x}=\rho\left(h_{\rho} \frac{\partial \rho}{\partial t}+h_{p} \frac{\partial p}{\partial t}\right)+\rho V\left(h_{\rho} \frac{\partial \rho}{\partial x}+h_{p} \frac{\partial p}{\partial x}\right)
$$

Thus, the LHS of energy equation can now be written as

$$
\rho\left(h_{\rho} \frac{\partial \rho}{\partial t}+h_{p} \frac{\partial p}{\partial t}\right)+\rho V\left(h_{\rho} \frac{\partial \rho}{\partial x}+h_{p} \frac{\partial p}{\partial x}\right)-\left(\frac{\partial p}{\partial t}+V \frac{\partial p}{\partial x}\right)
$$

- Collecting terms and equating to RHS, we get $\left(\rho h_{p}-1\right)\left(\frac{\partial p}{\partial t}+V \frac{\partial p}{\partial x}\right)+\rho h_{\rho}\left(\frac{\partial \rho}{\partial t}+V \frac{\partial \rho}{\partial x}\right)=\frac{\tau_{w} P}{A} V+\frac{q^{\prime \prime} P}{A}$

${ }^{2.34 \mathrm{PM}}$ The Governing Equations-VI

- The energy equation is already in the characteristic form

$$
\frac{d p}{d t}-a^{2} \frac{d \rho}{d t}=\frac{1}{\left(\rho h_{p}-1\right)}\left(\frac{\tau_{w} P}{A} V+\frac{q^{\prime \prime} P}{A}\right)
$$

along

$$
\frac{d x}{d t}=V
$$

- To get the continuity and momentum in the characteristic form, in pressure and velocity, we do some algebraic manipulations. Eq. (4) gives,

$$
\left(\frac{\partial \rho}{\partial t}+V \frac{\partial \rho}{\partial x}\right)=\left[\left(\frac{\partial p}{\partial t}+V \frac{\partial p}{\partial x}\right)-R H S_{E}\right] \frac{1}{a^{2}}
$$

The Governing Equations-VII

9/18

- Where RHS $_{E}$ is given by

$$
R H S_{E}=\frac{1}{\left(\rho h_{p}-1\right)}\left(\frac{\tau_{w} P}{A} V+\frac{q^{\prime \prime P}}{A}\right)
$$

Conservation of Mass (Eq. (1)) is rewritten as
$\frac{\partial \rho}{\partial t}+V \frac{\partial \rho}{\partial x}+\rho \frac{\partial V}{\partial x}=0$
\square Eqs. (5) and (6) gives

$$
\begin{aligned}
& {\left[\left(\frac{\partial p}{\partial t}+V \frac{\partial p}{\partial x}\right)-R H S_{E}\right] \frac{1}{a^{2}}+\rho \frac{\partial V}{\partial x}=0} \\
& \Rightarrow\left(\frac{\partial p}{\partial t}+V \frac{\partial p}{\partial x}\right)+a^{2} \rho \frac{\partial V}{\partial x}-R H S_{E}=0
\end{aligned}
$$

MOC-II

11/18

- The characteristic directions shall be given by

$$
\begin{aligned}
\frac{d x}{d t}= & V+\frac{a^{2}}{\beta}=\beta+V=\lambda \quad \Rightarrow \beta= \pm a \\
& \Rightarrow \frac{d x}{d t}=V \pm a
\end{aligned}
$$

- The compatibility conditions are

$$
\Rightarrow \frac{d p}{d t} \pm a \rho \frac{d V}{d t}=R H S_{E} \pm a \frac{\tau_{w} P}{A}=0, \quad \text { along } \frac{d x}{d t}=V \pm a
$$

2:34 PM MOC-I

- Conservation of Momentum Eq. (2) is rewritten as $\rho \frac{\partial V}{\partial t}+\rho V \frac{\partial V}{\partial x}+\frac{\partial p}{\partial x}+\frac{\tau_{w} P}{A}=0$
- Using the Lagrange multiplier route as before Eq. (7) $+\beta$ Eq. (8) $=0$ implies $\left(\frac{\partial p}{\partial t}+V \frac{\partial p}{\partial x}\right)+a^{2} \rho \frac{\partial V}{\partial x}-R H S_{E}+$ $\beta\left(\rho \frac{\partial V}{\partial t}+\rho V \frac{\partial V}{\partial x}+\frac{\partial p}{\partial x}+\frac{\tau_{w} P}{A}\right)=0$
$\Rightarrow \frac{\partial p}{\partial t}+(\beta+V) \frac{\partial p}{\partial x}+\beta \rho\left(\frac{\partial V}{\partial t}+\left(V+\frac{a^{2}}{\beta}\right) \frac{\partial V}{\partial x}\right)-R H S_{E}-\beta \frac{\tau_{w} P}{A}=0$

2:34 PM

MOC-III

- Before proceeding further, let us summarise the modified governing equations
- The combined mass and momentum equations can be written as

$$
\frac{d p}{d t} \pm a \rho \frac{d V}{d t}=R H S_{E} \pm a \frac{\tau_{w} P}{A}=0, \quad \text { along } \frac{d t}{d x}=\frac{1}{V \pm a}
$$

- The energy equation is

$$
\frac{d p}{d t}-a^{2} \frac{d \rho}{d t}=R H S_{E}, \quad \text { along } \frac{d t}{d x}=\frac{1}{V}
$$

:34 PM

Forward Marching-I

- From every point three characteristics emerge
- The directions $1 /(\mathrm{V}+\mathrm{a}), 1 /(\mathrm{V}-\mathrm{a})$ are called Mach lines and the direction $1 / \mathrm{V}$ is called the path line
- Just as in water hammer equations, the variation of pressure and velocity are computed from Mach lines
- The change in density is then computed from path lines
- Let us look at the forward method, which is rather complex

Forward Marching-III

15/18

- Using the following relations, we can determine $\mathrm{x}_{\mathrm{j}}, \mathrm{V}_{\mathrm{j}}$ and t_{j}

$$
\frac{t_{j}-t_{0}}{x_{j}-x_{0}}=\frac{1}{V_{0}-a_{0}} \quad \frac{t_{3}-t_{j}}{x_{3}-x_{j}}=\frac{1}{V_{j}} \quad \frac{x_{j}-x_{0}}{x_{1}-x_{0}}=\frac{V_{j}-V_{0}}{V_{1}-V_{0}}
$$

- Using values of x_{i} and parameters at 0 and 1 compute, p_{j} and ρ_{j} by linear interpolation. Using the compatibility along $j-3$, and known p_{3}, p_{j} and ρ_{j} we can find ρ_{3}

2:34 PM

- The values of x, t, p, V and ρ are assumed to be known at points 0,1 and 2 . Also, if p and ρ are known, so is ' a '

$$
\frac{t_{3}-t_{1}}{x_{3}-x_{1}}=\frac{1}{V_{1}+a_{1}} \quad \frac{t_{3}-t_{2}}{x_{3}-x_{2}}=\frac{1}{V_{2}-a_{2}} \quad \text { Get } x_{3} \text { and } t_{3}
$$

- Using compatibility along 1-3 and 2-3, compute p_{3} and V_{3} similar to the method used in water hammer equations

Backward Marching-IV
Steps

1. Compute 'a' at 1 and 3
2. Calculate coordinates of 5 and 7
$\frac{t_{4}-t_{5}}{x_{4}-x_{5}}=\frac{1}{V_{1}+a_{1}} \frac{t_{4}-t_{7}}{x_{4}-x_{7}}=\frac{1}{V_{3}-a_{3}}$
[^0]
[^0]: 2:34 PM
 18/18
 3. Interpolate all variables to get them at 5 and 7
 4. Solve for p_{4} and V_{4}
 5. Calculate x coordinate at 6 using $\frac{t_{4}-t_{6}}{x_{4}-x_{6}}=\frac{1}{V_{4}}$
 6. Calculate ρ_{4}
 7. Boundary conditions are solved for similarly

 Left Boundary

 Right Boundary

