4/36

2:45 PM 3/36 2:45 PM **Transport Equation-II Transport Equation-III** □ Now we shall go towards solving Navier-Stokes(NS) □ Transport equation, though strictly will have no Equations discontinuity because of physical diffusion present, □ First we will look at the transport equation, which can have a strong directional bias depending on the relative strengths of diffusion and convection is a model equation for NS equations □ This is characterised by Peclet Number given by $T_t + uT_r = \alpha T_{rr}$ *uL Convection* \Box If u = 0, the above classifies as parabolic **Diffusion** equation, which did not have any discontinuity in □ We will begin with the linear transport equation space direction called the Burgers equation, where u and α are \Box If $\alpha = 0$, then it classifies as hyperbolic, which has a constants strong directional bias

45 PM FTCS - VI ¹⁵	/36
 At P = 20, R = 2/C, there was no stability issue 	
 At P = 50, R < 2/C, yet there appears to be a unstable like situation, though stability is not violated 	
 If we rewrite the nodal equation, we can understand the issue 	
$T_i^{n+1} = T_i^n - \frac{C}{2}(T_{i+1}^n - T_{i-1}^n) + D(T_{i+1}^n - 2T_i^n + T_{i-1}^n)$	
$= \left(D - \frac{\tilde{C}}{2}\right)T_{i+1}^{n} - 2DT_{i}^{n} + \left(D + \frac{C}{2}\right)T_{i-1}^{n}$	
$= D\left(1 - \frac{R}{2}\right)T_{i+1}^{n} - 2DT_{i}^{n} + D\left(1 + \frac{R}{2}\right)T_{i-1}^{n}$	
 Note that the coefficient of the first term become 	s
negative for $R > 2$	

 ^{2:45 PM} F • This is called an • This can be und example of weighted by the set of the set of	TCS - VII n overshoot problem derstood by considering a simple ghted average
 T = αT For the case of can construct the 	$T_1 + (1 - \alpha)T_2$ say $T_1 = 100$ and $T_2 = 150$, we be following table
α T 0.5 125 0.3 135 0.1 145 0 150 -0.1 155 -0.3 165 -0.5 175	Notice that the value of weighted average exceeds the two extremum values. Thus when we have negative weights, we will end up with unphysical solutions

2:45 PM	1	9/36
• It m neç pro	hay be observed that as C+2D <1, there is no pative coefficients and hence no overshoot blem for $R > 2$.	D
• Thu and and	us the method is first order accurate in space I time, is diffusive except for C = 1, consister I conditionally stable.	e nt
• Ma Coi sys limi	ny of the CFD works on analysis of nvection and Diffusion in large engineering tems use this method, in spite of its tations.	

