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2:45 PM 1/36 
Transport Equation-I 

� We have now seen how to handle Parabolic 

Elliptic and Hyperbolic equations 

� Hyperbolic equations are best solved by 
forward marching MOC 

� However, MOC programming is tedious in 

forward mode 

� The backward marching is somewhat similar 
to finite difference methods 

� Many schemes exist, we saw only a few for 

convection equation 

2:45 PM 2/36 

Transport Equation-II 
� Now we shall go towards solving Navier-Stokes(NS) 

Equations 

� First we will look at the transport equation, which 
is a model equation for NS equations 

xxxt TuTT α=+

� If u = 0, the above  classifies as parabolic 

equation, which did not have any discontinuity in 
space direction 

� If α = 0, then it classifies as hyperbolic, which has a 

strong directional bias 

2:45 PM 3/36 
Transport Equation-III 

� Transport equation, though strictly will have no 

discontinuity because of physical diffusion present, 
can have a strong directional bias depending on 

the relative strengths of diffusion and convection 

� This is characterised by Peclet Number given by  

Diffusion

ConvectionuL
P ==

α

� We will begin with the linear transport equation 
called the Burgers equation, where u and α are 
constants 

2:45 PM 4/36 
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 Burger’s Equation-I 
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 Analytical Solution-I 
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 Analytical Solution-II 
2:45 PM 7/36 

 Analytical Solution-III 
2:45 PM 8/36 
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 Analytical Solution-IV 
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• Hirt’s Stability 1
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• Von-Neumann 122 ≤≤ DC

• Definition of Cell Peclet (Reynolds) Number 
D
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FTCS - II 
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• We look at increasing P for the problem 

• C < 1, R < 2/C in every case so as to not 

violate stability 

FTCS - III 
2:45 PM 12/36 
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• As P increases, the accuracy deteriorates, Still 

predictions are OK 

FTCS - IV 
2:45 PM 13/36 

• At P = 20, the time step is too high to be accurate 

• As R goes more than 2 there is a major problem 

FTCS - V 
2:45 PM 14/36 

FTCS - VI 
• At P = 20, R = 2/C, there was no stability issue 

• At P = 50, R < 2/C, yet there appears to be a 

unstable like situation, though stability is not 

violated 

• If we rewrite the nodal equation, we can 

understand the issue 
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• Note that the coefficient of the first term becomes 

negative for R > 2 

2:45 PM 15/36 

• This is called an overshoot problem 

• This can be understood by considering a simple 

example of weighted average 

21 )1( TTT αα −+=

• For the case of say T1 = 100 and T2 = 150, we 

can construct the following table   

α T 

0.5 125 

0.3 135 

0.1 145 

0 150 

-0.1 155 

-0.3 165 

-0.5 175 

• Notice that the value of 

weighted average exceeds the 

two extremum values. Thus 

when we have negative 

weights, we will end up with 

unphysical solutions 

FTCS - VII 
2:45 PM 16/36 
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First Order Upwind Scheme - I 

• Nodal Equation becomes 
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• Consistency Analysis gives 

Consistent 

( ) HOTTxutTuT xxxxxx +∆+∆−= 5.05.0 2α

Additional Same as that of FTCS 
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• For C = 1, the numerical diffusion is equal to 

physical diffusion, where as for large R, with 

C<1, the numerical diffusion is large 

xutueffective ∆+∆−= 5.05.0
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( )RCR 5.05.01 +−= α

( ))1(5.01 CR −+= α

• Von-Neumann 12
2 ≤+≤ DCC

First Order Upwind Scheme - II 

2:45 PM 18/36 

• It may be observed that as C+2D <1, there is no 

negative coefficients and hence no overshoot 

problem for R > 2. 

• Thus the method is first order accurate in space 

and time, is diffusive except for C = 1, consistent 

and conditionally stable. 

• Many of the CFD works on analysis of 

Convection and Diffusion in large engineering 

systems use this method, in spite of its 

limitations. 

2:45 PM 19/36 

First Order Upwind 

2:45 PM 20/36 
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Second Order Upwind Scheme -I 

• One interesting way of eliminating the extra 

diffusion by using the third order backward 

difference for the convective term and central 

difference for the diffusive. This scheme is 

called the Leonard Scheme 
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• The finite difference form of the transport  

equation may be written as 
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• Consistency Analysis gives 

• This implies that we can turn off numerical 

diffusion by decreasing ∆t to a sufficiently small 

value 

• Method is ),(
2

xtO ∆∆

Second Order Upwind Scheme -II 
2:45 PM 22/36 

Second Order Upwind Scheme - II 

• The expression is messy, but condition for stability 

can be obtained graphically. Will be shown at the 

end of the lecture 

• Von-Neumann 
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• The method cannot be applied for the second 

node and a first order method may have to be 

invoked. 
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• Suffers from an overshoot problem at high R 

2:45 PM 23/36 

Second Order Upwind 

2:45 PM 24/36 
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MacCormack Scheme-I 
• Both Lax and Lax-Wendroff Schemes are 

unconditionally unstable for transport equation 

• However, MacCormack Scheme is extremely 

good to turn off numerical diffusion 

• It also has the higher stability limits in 

comparison with other methods 

• We will look at the basis for the scheme 

• It has two steps, but utilises explicit methods for 

both predictor and corrector steps 

• The predictor step uses a forward difference for 

the convective term and central difference for 

diffusion term 

2:45 PM 25/36 

MacCormack Scheme-II 

• Nodal Equation becomes 
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• The corrector step uses the same concept, but 

takes these terms to be an average of the 

values at n and n+1 level 

x

TT

x

T
n

i

n

i

n

i ∆

−
=

∂

∂ +1

t

TT

t

T n

i

1n

i

n

i ∆

−
=

∂

∂ +

for u>0, 
2

11

2

2 2

x

TTT

x

T n

i

n

i

n

i

n

i
∆

+−
=

∂

∂ −+

• Predictor Scheme 
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• Corrector Scheme 

MacCormack Scheme-III 

• Nodal Equation becomes 
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• By using the predictor equation for each of the 

predicted term in the above equation, we can write, 

Where, A*= 0.5 CD+0.5D2, B*= 0.5C+D-CD+0.5C2-2D2,  

         C* = 1-2D-C2+3D2, D* = -0.5C+D+CD+0.5C2-2D2, 

         E* = -0.5CD+0.5D2  

MacCormack Scheme-IV 
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MacCormack Scheme-V 
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• Consistency Analysis gives 
Consistent 

• Less diffusive as leading diffusion term is of 

fourth order  

• Method is )x,t(O 22 ∆∆

• Conditionally Stable for  about C ≤ 0.85, D ≤ 0.5. 

The exact stability bound is given later after Von 

Numann expression is given in next slide 
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• Von-Neumann 
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MacCormack Scheme-VI 
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Backward-Time Centered-Space 

Method - I 
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• Consistency Analysis gives 
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Diffusive Dispersive 

• Unconditionally stable  

• Suffers from Overshoot problem at High R 

• Method is ),(
2
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• Von Neumann analysis gives  
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Backward-Time Centered-Space 

Method - II 
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Backward-Time Centered-Space 

Method - III 

2:45 PM 33/36 
Crank Nicholson Method - I 
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• Consistency Analysis gives 
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Dispersive 

• Unconditionally stable  

• Suffers from Overshoot problem at High R 
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Crank Nicholson Method - II 
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Crank Nicholson Method - III 
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