

2:45 PM Transport Equation-I
We have now seen how to handle Parabolic Elliptic and Hyperbolic equations

- Hyperbolic equations are best solved by forward marching MOC

However, MOC programming is tedious in forward mode

The backward marching is somewhat similar to finite difference methods

Many schemes exist, we saw only a few for convection equation

::45 PM Transport Equation-II

Now we shall go towards solving Navier-Stokes(NS) Equations

F First we will look at the transport equation, which is a model equation for NS equations

$$
T_{t}+u T_{x}=\alpha T_{x x}
$$

If $u=0$, the above classifies as parabolic equation, which did not have any discontinuity in space direction

If $\alpha=0$, then it classifies as hyperbolic, which has a strong directional bias

Transport Equation-III

Transport equation, though strictly will have no discontinuity because of physical diffusion present, can have a strong directional bias depending on the relative strengths of diffusion and convection

This is characterised by Peclet Number given by

$$
P=\frac{u L}{\alpha}=\frac{\text { Convection }}{\text { Diffusion }}
$$

We will begin with the linear transport equation called the Burgers equation, where u and α are constants

2:45 PM \quad Burger's Equation-I	
$\begin{aligned} & \overline{\mathrm{T}}_{\mathrm{t}}+\mathrm{u} \overline{\mathrm{~T}}_{\mathrm{x}}=\alpha \overline{\mathrm{T}}_{\mathrm{xx}} \rightarrow \overline{\mathrm{~T}}(\mathrm{x}, \mathrm{t}) \\ & \mathrm{u}=0.1 \mathrm{~cm} / \mathrm{s} \text { and } \alpha=0.01 \mathrm{~cm}^{2} / \mathrm{s} \\ & \overline{\mathrm{~T}}(0.0, \mathrm{t})=0.0 \text { and } \overline{\mathrm{T}}(1.0, \mathrm{t})=100.0 \mathrm{C} \\ & \overline{\mathrm{~T}}(\mathrm{x}, 0.0)=100.0 \mathrm{x}, \quad 0.0 \leq \mathrm{x} \leq 1.0 \end{aligned}$	

2:45 PM Analytical Solution-I
The exact solution is given by:
$\overline{\mathrm{T}}(\mathrm{x}, \mathrm{t})=100\left(\frac{\mathrm{e}^{(\mathrm{P} \times / \mathrm{L})}-1}{\mathrm{e}^{\mathrm{P}}-1}-\frac{4 \pi \mathrm{e}^{(\mathrm{Px} / 2 \mathrm{~L})} \sinh (\mathrm{P} / 2)}{\mathrm{e}^{\mathrm{P}}-1} \sum_{\mathrm{m}=1}^{\infty} \mathrm{A}_{\mathrm{m}}\right.$
$\left.+2 \pi \mathrm{e}^{(\mathrm{Px} / 2 \mathrm{~L})} \sum_{\mathrm{m}=1}^{\infty} \mathrm{B}_{\mathrm{m}}\right)$

where the Peclet (Reynolds) number is defined as
$\mathrm{P}=\mathrm{uL} / \alpha \quad$ Peclet (Reynolds)number
Analytical Solution-II
$\mathrm{A}_{\mathrm{m}}=(-1)^{\mathrm{m}}\left(\frac{\mathrm{m}}{\beta_{\mathrm{m}}}\right) \sin \left(\frac{\mathrm{m} \pi \mathrm{x}}{\mathrm{L}}\right) \mathrm{e}^{-\lambda_{\mathrm{m}} \mathrm{t}}$
$\mathrm{B}_{\mathrm{m}}=\left((-1)^{\mathrm{m}+1}\left(\frac{\mathrm{~m}}{\beta_{\mathrm{m}}}\right)\left(1+\frac{\mathrm{P}}{\beta_{\mathrm{m}}}\right) \mathrm{e}^{-\mathrm{P} / 2}+\frac{\mathrm{mP}}{\beta_{\mathrm{m}}^{2}}\right) \sin \left(\frac{\mathrm{m} \pi \mathrm{x}}{\mathrm{L}}\right) \mathrm{e}^{-\lambda_{\mathrm{m}} \mathrm{t}}$
$\beta_{\mathrm{m}}=\left(\frac{\mathrm{P}}{2}\right)^{2}+(\mathrm{m} \pi)^{2}$ and $\lambda_{\mathrm{m}}=\frac{\mathrm{u}^{2}}{4 \alpha}+\frac{\mathrm{m}^{2} \pi^{2} \alpha}{\mathrm{~L}^{2}}=\frac{\alpha \beta_{\mathrm{m}}}{\mathrm{L}^{2}}$
2:45 PM
2:45 PM

| $2: 45 \mathrm{PM}$ | FTCS - III |
| :---: | :---: | :---: |
| - We look at increasing P for the problem | |
| - $\mathrm{C}<1, \mathrm{R}<2 / \mathrm{C}$ in every case so as to not | |
| violate stability | |

2:45 PM

FTCS - VI

- At $P=20, R=2 / C$, there was no stability issue
- At $P=50, R<2 / C$, yet there appears to be a unstable like situation, though stability is not violated
- If we rewrite the nodal equation, we can understand the issue

$$
\begin{aligned}
T_{i}^{n+1} & =T_{i}^{n}-\frac{C}{2}\left(T_{i+1}^{n}-T_{i-1}^{n}\right)+D\left(T_{i+1}^{n}-2 T_{i}^{n}+T_{i-1}^{n}\right) \\
& =\left(D-\frac{C}{2}\right) T_{i+1}^{n}-2 D T_{i}^{n}+\left(D+\frac{C}{2}\right) T_{i-1}^{n} \\
& =D\left(1-\frac{R}{2}\right) T_{i+1}^{n}-2 D T_{i}^{n}+D\left(1+\frac{R}{2}\right) T_{i-1}^{n}
\end{aligned}
$$

- Note that the coefficient of the first term becomes negative for $R>2$

2:45 PM

FTCS - VII

- This is called an overshoot problem
- This can be understood by considering a simple example of weighted average

$$
T=\alpha T_{1}+(1-\alpha) T_{2}
$$

- For the case of say $T_{1}=100$ and $T_{2}=150$, we can construct the following table
α T
0.5125
0.3135
0.1145

0150
-0.1 155
-0.3 165
-0.5 175

- Notice that the value of weighted average exceeds the two extremum values. Thus when we have negative weights, we will end up with unphysical solutions

First Order Upwind Scheme - I
$\left|\frac{\partial \mathrm{T}}{\partial \mathrm{t}}\right|_{\mathrm{i}}^{\mathrm{n}}=\left.\frac{\mathrm{T}_{\mathrm{i}}^{\mathrm{n}+1}-\mathrm{T}_{\mathrm{i}}^{\mathrm{n}}}{\Delta \mathrm{t}} \frac{\partial \mathrm{T}}{\partial \mathrm{x}}\right|_{\mathrm{i}} ^{\mathrm{n}}=\frac{\mathrm{T}_{\mathrm{i}}^{\mathrm{n}}-\mathrm{T}_{\mathrm{i}-1}^{\mathrm{n}}}{\Delta \mathrm{x}}$ for $\mathrm{u}>0,\left.\frac{\partial^{2} T}{\partial x^{2}}\right|_{i} ^{n}=\frac{T_{i+1}^{n}-2 T_{i}^{n}+T_{i-1}^{n}}{\Delta x^{2}}$

- Nodal Equation becomes

$$
\begin{aligned}
& T_{i}^{n+1}=T_{i}^{n}-C\left(T_{i}^{n}-T_{i-1}^{n}\right)+D\left(T_{i+1}^{n}-2 T_{i}^{n}+T_{i-1}^{n}\right) \\
& T_{i}^{n+1}=D T_{i+1}^{n}+(1-C-2 D) T_{i}^{n}+(C+D) T_{i+1}^{n}
\end{aligned}
$$

- Consistency Analysis gives
$T_{t}+u T_{x}=\alpha T_{x x}+\left(0.5 u \Delta x-0.5 u^{2} \Delta t\right) T_{x x}+$ HOT Consistent
$=\alpha T_{x x}-0.5 u^{2} \Delta t T_{x x}+(0.5 u \Delta x) T_{x x}+H O T$
Same as that of FTCS Additional

Second Order Upwind Scheme -I

- One interesting way of eliminating the extra diffusion by using the third order backward difference for the convective term and central difference for the diffusive. This scheme is called the Leonard Scheme

$$
\begin{gathered}
\left.\frac{\partial \mathrm{T}}{\partial \mathrm{t}}\right|_{\mathrm{i}} ^{\mathrm{n}}=\left.\frac{\mathrm{T}_{\mathrm{i}}^{\mathrm{n}+1}-\mathrm{T}_{\mathrm{i}}^{\mathrm{n}}}{\Delta \mathrm{t}} \frac{\partial T}{\partial x}\right|_{i} ^{n}=\frac{2 T_{i+1}^{n}+3 T_{i}^{n}-6 T_{i-1}^{n}+T_{i-2}^{n}}{6 \Delta x}-\frac{1}{12} T_{x x x x} \Delta x^{3} \\
\left.\frac{\partial^{2} T}{\partial x^{2}}\right|_{i} ^{n}=\frac{T_{i+1}^{n}-2 T_{i}^{n}+T_{i-1}^{n}}{\Delta x^{2}} \quad \text { for } \mathrm{u}>0
\end{gathered}
$$

:45 PM

22/36

Second Order Upwind Scheme -II

- The finite difference form of the transport equation may be written as

$$
T_{i}^{n+1}=T_{i}^{n}-\frac{C}{6}\left(2 T_{i+1}^{n}+3 T_{i}^{n}-6 T_{i-1}^{n}+T_{i-2}^{n}\right)+D\left(T_{i+1}^{n}-2 T_{i}^{n}+T_{i-1}^{n}\right)
$$

- Consistency Analysis gives
$T_{t}+u T_{x}=\alpha T_{x x}-0.5 u^{2} \Delta t T_{x x}+\left(u \alpha \Delta t-\frac{1}{3} u^{3} \Delta t^{2}\right) T_{x x x}+H O T$
- This implies that we can turn off numerical diffusion by decreasing Δt to a sufficiently small value
- Method is $O\left(\Delta t, \Delta x^{2}\right)$

2:45 PM

MacCormack Scheme-I

- Both Lax and Lax-Wendroff Schemes are unconditionally unstable for transport equation
- However, MacCormack Scheme is extremely good to turn off numerical diffusion
- It also has the higher stability limits in comparison with other methods
- We will look at the basis for the scheme
- It has two steps, but utilises explicit methods for both predictor and corrector steps
- The predictor step uses a forward difference for the convective term and central difference for diffusion term

MacCormack Scheme-II

- Predictor Scheme
$\left.\frac{\partial T}{\partial \mathrm{t}}\right|_{\mathrm{i}} ^{n}=\left.\frac{\mathrm{T}_{\mathrm{i}}^{\mathrm{n+1}}-\mathrm{T}_{\mathrm{i}}^{\mathrm{n}}}{\Delta \mathrm{t}} \frac{\partial T}{\partial x}\right|_{i} ^{n}=\frac{T_{i+1}^{n}-T_{i}^{n}}{\Delta x}$ for $\mathrm{u}>0,\left.\frac{\partial^{2} T}{\partial x^{2}}\right|_{i} ^{n}=\frac{T_{i+1}^{n}-2 T_{i}^{n}+T_{i-1}^{n}}{\Delta x^{2}}$
- Nodal Equation becomes

$$
\begin{aligned}
& \bar{T}_{i}^{n+1}=T_{i}^{n}-C\left(T_{i+1}^{n}-T_{i}^{n}\right)+D\left(T_{i+1}^{n}-2 T_{i}^{n}+T_{i-1}^{n}\right) \\
& \bar{T}_{i}^{n+1}=D T_{i-1}^{n}+(1+C-2 D) T_{i}^{n}+(-C+D) T_{i+1}^{n}
\end{aligned}
$$

- The corrector step uses the same concept, but takes these terms to be an average of the values at n and $n+1$ level

$$
\begin{aligned}
& \text { 2:45 PM } \\
& \quad \text { MacCormack Scheme-IV } \\
& \begin{aligned}
T_{i}^{n+1}= & T_{i}^{n}-\frac{c}{2}\left(T_{i+1}^{n}-T_{i}^{n}+\bar{T}_{i}^{n+1}-\bar{T}_{i-1}^{n+1}\right)+\frac{D}{2}\left(T_{i+1}^{n}-2 T_{i}^{n}+T_{i-1}^{n}\right) \\
& +\frac{D}{2}\left(\bar{T}_{i+1}^{n+1}-2 \bar{T}_{i}^{n+1}+\bar{T}_{i-1}^{n+1}\right)
\end{aligned}
\end{aligned}
$$

- By using the predictor equation for each of the predicted term in the above equation, we can write,

$$
T_{i}^{n+1}=A^{*} T_{i-2}^{n}+B^{*} T_{i-1}^{n}+C^{*} T_{i}^{n}+D^{*} T_{i+1}^{n}+E^{*} T_{i+2}^{n}
$$

Where, $\mathrm{A}^{*}=0.5 \mathrm{CD}+0.5 \mathrm{D}^{2}, \mathrm{~B}^{*}=0.5 \mathrm{C}+\mathrm{D}-\mathrm{CD}+0.5 \mathrm{C}^{2}-2 \mathrm{D}^{2}$,

$$
C^{*}=1-2 D-C^{2}+3 D^{2}, D^{*}=-0.5 C+D+C D+0.5 C^{2}-2 D^{2}
$$

$$
\mathrm{E}^{*}=-0.5 C D+0.5 \mathrm{D}^{2}
$$

$$
\begin{aligned}
& \text { 2:45 PM }{ }^{2} \text { ackward-Time Centered-Space }{ }^{31 / 36} \\
& \text { Method - I } \\
& \left.\frac{\partial T}{\partial t}\right|_{i} ^{n+1}=\left.\frac{T_{i}^{n+1}-T_{i}^{n}}{\Delta t} \frac{\partial T}{\partial x}\right|_{i} ^{n+1}=\left.\frac{T_{i+1}^{n+1}-T_{i-1}^{n+1}}{2 \Delta x} \frac{\partial^{2} T T^{n+1}}{\partial x^{2}}\right|_{i}=\frac{T_{i+1}^{n+1}-2 T_{i}^{n+1}+T_{i-1}^{n+1}}{\Delta x^{2}} \\
& \text { • Nodal Equation becomes } \\
& T_{i}^{n+1}-T_{i}^{n}+\frac{C}{2}\left(T_{i+1}^{n+1}-T_{i-1}^{n+1}\right)-D\left(T_{i+1}^{n+1}-2 T_{i}^{n+1}-T_{i-1}^{n+1}\right)=0 \\
& \Rightarrow\left(\frac{C}{2}-D\right) T_{i+1}^{n+1}+(1+2 D) T_{i}^{n+1}-\left(\frac{C}{2}+D\right) T_{i-1}^{n+1}=T_{i}^{n}
\end{aligned}
$$

- Can Solve by TDMA

MacCormack Scheme-VI

- Von-Neumann

$$
\begin{aligned}
G=C^{*}+ & \left(B^{*}+D^{*}\right) \operatorname{Cos} \theta+\left(A^{*}+E^{*}\right) \operatorname{Cos} 2 \theta \\
& +I\left(\left(D^{*}-B^{*}\right) \operatorname{Sin} \theta+\left(E^{*}-A^{*}\right) \operatorname{Sin} 2 \theta\right)
\end{aligned}
$$

$\overbrace{}^{2: 45 \text { PM }}$ Crank Nicholson Method - I ${ }^{\text {34/36 }}$		
$\left\|\frac{\partial T}{\partial t}\right\|_{i}^{n+0.5}=\left.\frac{T_{i}^{n+1}-T_{i}^{n}}{\Delta t} \quad \frac{\partial T}{\partial x}\right\|_{i} ^{n+0.5}=0.5\left(\frac{T_{i+1}^{n+1}-T_{i-1}^{n+1}}{2 \Delta x}+\frac{T_{i+1}^{n}-T_{i-1}^{n}}{2 \Delta x}\right)$		
$\left.\frac{\partial^{2} T}{\partial x^{2}}\right\|_{i} ^{n+0.5}=0.5\left(\frac{T_{i+1}^{n+1}-2 T_{i}^{n+1}+T_{i-1}^{n+1}}{\Delta x^{2}}+\frac{T_{i+1}^{n}-2 T_{i}^{n}+T_{i-1}^{n}}{\Delta x^{2}}\right)$ - Nodal Equation becomes		
$\begin{aligned} & \left(\frac{C}{2}-D\right) T_{i+1}^{n+1}-2(1+D) T_{i}^{n+1}-\left(\frac{C}{2}+D\right) T_{i-1}^{n+1}= \\ & \quad-\left(\frac{C}{2}-D\right) T_{i+1}^{n}+2(1-D) T_{i}^{n}+\left(\frac{C}{2}+D\right) T_{i-1}^{n} \end{aligned}$		

${ }^{\text {2:45 PM }}$ Crank Nicholson Method - II ${ }^{\text {35/36 }}$

