4/17

1

2:57 Phe cross differentiation leads to	6/17
$\frac{\partial}{\partial y}\left(\frac{\partial u}{\partial t} + u\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial y}\right) = \frac{\partial}{\partial y}\left(-\frac{\partial p}{\partial x} + v\left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}\right)\right)$	
$\frac{\partial}{\partial x} \left(\frac{\partial v}{\partial t} + u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} \right) = \frac{\partial}{\partial x} \left(-\frac{\partial p}{\partial y} + v \left(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} \right) \right)$	
□ To simplify matters, let us first look at LHS	
$\frac{\partial}{\partial t} \left(\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} \right) + \left(\frac{\partial u}{\partial x} \frac{\partial v}{\partial x} + u \frac{\partial^2 v}{\partial x^2} \right) - \left(\frac{\partial u}{\partial y} \frac{\partial u}{\partial x} + u \frac{\partial^2 u}{\partial x \partial y} \right) +$	
$\left(\frac{\partial v}{\partial x}\frac{\partial v}{\partial y} + v\frac{\partial^2 v}{\partial x\partial y}\right) - \left(\frac{\partial v}{\partial y}\frac{\partial u}{\partial y} + v\frac{\partial^2 u}{\partial x^2}\right)$	
5 6 7 8	

2:57 PM

$$\frac{\partial}{\partial t} \left(\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} \right) + \frac{\partial u}{\partial x} \left(\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} \right) + u \frac{\partial}{\partial x} \left(\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} \right) + u \frac{\partial}{\partial x} \left(\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} \right) + \frac{\partial v}{\partial y} \left(\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} \right) \qquad \text{Using Continuity}$$

$$\frac{\partial v}{\partial y} \left(\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} \right) + v \frac{\partial}{\partial y} \left(\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} \right) \qquad \text{Using Continuity}$$

$$\frac{\partial v}{\partial x} \left(\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} \right) + \frac{\partial u}{\partial y} \left(\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} \right) \qquad \text{Using Continuity}$$

$$\frac{\partial v}{\partial x} \left(\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} \right) + \frac{\partial u}{\partial x} \left(\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} \right) = \frac{\partial v}{\partial x} \left(\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} \right)$$

$$\frac{\partial v}{\partial x} \left(\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} \right) = \frac{\partial v}{\partial x} \left(\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} \right) = \frac{\partial v}{\partial y} \left(\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} \right)$$

2:53 PMboking at RHS

$$\frac{\partial}{\partial x} \left(-\frac{\partial p}{\partial y} + v \left(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} \right) \right) - \frac{\partial}{\partial y} \left(-\frac{\partial p}{\partial x} + v \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right) \right)$$

$$\Rightarrow v \left(\frac{\partial}{\partial x} \left(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} \right) - \frac{\partial}{\partial y} \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right) \right)$$

$$\Rightarrow v \left(\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \right) \left(\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} \right) \right)$$

$$\Rightarrow v \left(\frac{\partial^2 \omega}{\partial x^2} + \frac{\partial^2 \omega}{\partial y^2} \right)$$

2:53 PM hus the two momentum equations collectively reduce/17 to $\frac{\partial \omega}{\partial t} + u \frac{\partial \omega}{\partial x} + v \frac{\partial \omega}{\partial y} = v \left(\frac{\partial^2 \omega}{\partial x^2} + \frac{\partial^2 \omega}{\partial x^2} \right)$ $\square \text{ This is nothing but the transport of vorticity and is called the Vorticity Transport Equation$ $<math display="block">\square \text{ Further we had shown previously that the stream function, <math>\psi$, satisfies the continuity automatically and vorticity can be rewritten as $\omega = \frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} \qquad \Rightarrow \omega = \frac{\partial}{\partial x} \left(-\frac{\partial \psi}{\partial x} \right) - \frac{\partial}{\partial y} \left(\frac{\partial \psi}{\partial y} \right)$ $\Rightarrow \omega = -\left(\frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2} \right)$ 2:5 PM hus, the governing equations of fluid motion are: 10/17 $\Rightarrow \omega = -\left(\frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2}\right)$ $\frac{\partial \omega}{\partial t} + u \frac{\partial \omega}{\partial x} + v \frac{\partial \omega}{\partial y} = v \left(\frac{\partial^2 \omega}{\partial x^2} + \frac{\partial^2 \omega}{\partial x^2}\right)$ $\Box \text{ The velocities can be expressed as}$ $\Rightarrow u = \frac{\partial \psi}{\partial y}, \quad v = -\frac{\partial \psi}{\partial x}$ $\Box \text{ Since we have already discussed methods to solve transport and Poisson equations, no new concept is required}$

2:57 PM	Thus, we can write at left boundary	15/17
	$\Rightarrow \omega_{1,j} = -\psi_{2,j} \frac{2}{\Delta x^2}$	
	Similarly at the right boundary	
	$\Rightarrow \omega_{Nx,j} = -\psi_{Nx-1,j} \frac{2}{\Delta x^2}$ Similarly, we can write at bottom boundary	
	$\Rightarrow \omega_{i,1} = -\psi_{i,2} \frac{2}{\Delta y^2}$	
	Similarly for the top boundary	
	$\Rightarrow \omega_{i,Ny} = -\psi_{i,Ny-1} \frac{2}{\Delta y^2} - \frac{2U}{\Delta y}$ The difference due to top us	e is U

2:57 PM	Solution Methodology-IV	14/17
	Also, since $u = 0$ all along the wall $\Rightarrow \frac{\partial \psi}{\partial y} = 0$	
	$\Rightarrow \frac{\partial^2 \psi}{\partial y^2} = 0 \text{along the left wall}$	
	By definition $\Rightarrow \omega = -\left(\frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2}\right)$	
	$\Rightarrow \omega_{1,j} = -\frac{\partial^2 \psi}{\partial x^2}\Big _{1,j}$	
	From the above equation and the Taylor series	
	expansion given in previous slide, we can write	
$\Rightarrow \psi_{2,j} =$	$=\psi_{I,j} + \frac{\partial\psi}{\partial x}\Big _{I,j} \Delta x + \frac{\partial^2\psi}{\partial x^2}\Big _{I,j} \frac{\Delta x^2}{2} = 0 + 0 - \omega_{I,j} \frac{\Delta x^2}{2}$	2

2:57	Details of the Procedure
1.	Specify geometry, initial conditions, top velocity and property values. You may note that the values of u, v, ψ , and ω are all 0 at the initial condition
2.	FTCS or BTCS can be used for the transport equation, which must satisfy the stability condition
3.	Solve the transport equation to get ω^{n+1}
4.	Now that the ω has been found everywhere, solve for stream function equation to get ψ^{n+1} . You can use Central difference scheme as done previously for elliptical solver
5.	Having found ψ , compute for u^{n+1} and v^{n+1} using a central difference representation for the derivative

2:57 PM **Details of the Procedure**

17/17

- 6. Obtain the boundary conditions for ω^{n+1}
- 7. You would have to iterate steps 3, 4, 5 and 6 in case of implicit methods being used.
- 8. March to the next time step and continue till the entire time of interest is completed, or steady state is reached.