ME 704
 Computational Methods in Thermal and Fluids Engineering (Solution of Non-Linear Equations)

Kannan Iyer
Kiyer@iitb.ac.in

Department of Mechanical Engineering Indian Institute of Technology, Bombay

General-1

There are many applications in TFE that requires solution of Non-linear equationHeat generating sphere cooled by convection and radiation

$$
\dot{Q}-h A\left(T_{B}-T_{\infty}\right)-\sigma \varepsilon A\left(T_{B}{ }^{4}-T_{\infty}{ }^{4}\right)=0
$$

Some Observations-I

. While one linear equation will have a unique solution, a non-linear equation may have several solutions e.g. $\operatorname{Sin}(x)=0$.

- Some equations may have no solution at all? e.g. $x-e^{x}=0$.
. Some equations may have no real solutions e.g. $x^{2}+1=0$.

I In most physical problem we will be looking for real solutions.

- No method is foolproof to guarantee a solution
- However, it is not very difficult to get a solution

Some Observations-II

- A non-linear equation is also called a transcendental equation
- We shall discuss some of the most popular methods
- Broadly the methods can be divided in twogroups
] Those that need bracketing of rootsThose that do not need bracketing

Bracketing of Roots-I

\square Experience

- Speed of an automobile may be 0-120 km/hr
- Temperature of a furnace may be from $200-1000^{\circ} \mathrm{C}$
\square Common sense
- In open channel flow height of free liquid will be $0<h<D$
\square Incremental search
Will be discussed in next slide

Bracketing of Roots-II

Incremental Search

Bisection Method

- Needs bracketing

Guaranteed solution unless there is discontinuity

- Slow convergence rate

1. Bracket the root and identify x_{p} and x_{n}
2. Do Until I < Imax
3. $X_{\text {new }}=0.5^{*}\left(x_{p}+x_{n}\right)$
4. If $f(x n e w)<$ Tol then
5. Root $=x_{\text {new }}$ and Get out
6. Elself $f\left(x_{\text {new }}\right)<0$ Then
$x_{n}=x_{\text {new }}$
Else $x_{p}=x_{\text {new }}$
Endif
7. $\mathrm{I}=\mathrm{I}+1$
8. Enddo

Method of False Position-I

- Needs bracketing
- Guaranteed solution unless there is discontinuity
- Slow convergence rate but faster than bisection method

Method of False Position-II

- The guess for the new point can be obtained

Logic

1. Bracket the root and identify x_{p} and x_{n}
2. Do Until I < Imax
3. $m=\left(f\left(x_{p}\right)-f\left(x_{n}\right)\right) /\left(x_{p}-x_{n}\right)$
4. $X_{\text {new }}=x_{n}-f\left(x_{n}\right) / m$
5. If $f(x n e w)<$ Tol then
6. Root $=x_{\text {new }}$ and Get out
7. Elself $f\left(x_{\text {new }}\right)<0$ Then
$x_{n}=x_{\text {new }}$
Else $x_{p}=x_{\text {new }}$
Endif
8. $I=I+1$
9. Enddo

Secant Method-I

- Does not need bracketing

Modification of false position method
The new point replaces the last but one point

- Good Convergence
- Most preferred method

X

Newton's Method-I

- Does not need bracketing
\square Modification of false position method
\square The new point replaces the last but one point
\square Good Convergence
- Most preferred method

X

Logic

1. Take any two points x_{1} and x_{2}
2. Do Until I < Imax
3. $m=\left(f\left(x_{2}\right)-f\left(x_{1}\right)\right) /\left(x_{2}-x_{1}\right)$

One can under-
2. $X_{\text {new }}=x_{2}-f\left(x_{2}\right) / m$
 relax here
3. If $f(x n e w)<$ Tol then
4. Root $=x_{\text {new }}$ and Get out
5. Else
$x_{1}=x_{2}$
$x_{2}=x_{\text {new }}$
Endif
3. $I=I+1$
4. Enddo

Newton's Method-II

- The basis arises from linearised Taylor Series $f\left(x_{n+1}\right)=f\left(x_{n}+\Delta x_{n}\right)=f\left(x_{n}\right)+f^{\prime}\left(x_{n}\right) \Delta x_{n}$
- The new value of x_{n+1} is arrived by setting $f\left(x_{n+1}\right)=0$

$$
\begin{gathered}
f\left(x_{n+1}\right)=0=f\left(x_{n}\right)+f^{\prime}\left(x_{n}\right)\left(x_{n+1}-x_{n}\right) \\
\Rightarrow x_{n+1}=x_{n}-f\left(x_{n}\right) / f^{\prime}\left(x_{n}\right)
\end{gathered}
$$

Logic

1. Take any point x
2. Do Until I < Imax
3. $m=f^{\prime}(x)$
4. $X_{\text {new }}=x-f(x) / f^{\prime}(x)$
5. If $f(x n e w)<$ Tol then
6. Root $=x_{\text {new }}$ and Get out
7. Else $x=x_{\text {new }}$

Endif
3. $I=I+1$
4. Enddo

Fixed Point Iteration Method - I

- In this method, the equation $f(x)=0$ is first transformed to the form $\mathrm{g}(\mathrm{x})=\mathrm{x}$
- This can be done in several ways. For e.g. $x^{2}-2 x+1=0$ can be written as,

$$
x=\left(x^{2}+1\right) / 2 \text { Or } x=\sqrt{2 x-1}
$$

- The choice will be determined from the convergence rate of the method, which can be determined only after the problem is solved!
- Usually, it is done in a ad-hoc manner, as it takes little time to check if the method works or not

Fixed Point Iteration Method - II

- The recursive algorithm used is

$$
x_{n+1}=g\left(x_{n}\right)
$$

