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Introduction to Control Volume
Formulation
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TRANSPORT EQUATIONS

Generalised Transport Equation

dpo) d ), 9 d0
o ox (p o j+a (pq’ Fayj

Conservation Transported | Diffusion | Source Term
Equation variable Coefficient
Mass 1 0 0
X- )
momentum u u _P e
ox
Y-momentum v ad
H - % tpg,

2/28

2:48 PM 3/28

DOMAIN DISCRETISATION

Control Volumes

» The domain is divided into nodes and control faces are
kept at the middle of these nodes

» The problem is to solve for the unknowns at the nodes

PMDISCF{ETISATION PRINCIPLES-1

Consider 1-D Convection-Diffusion Equation
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DISCRETISATION PRINCIPLES-II
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For linear variation of the variable, we can write
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Central Difference Scheme
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DISCRETISATION PRINCIPLES-IV

» For every node, a similar equation can be written

» If boundaries are known, we can write N

equations for N interior nodes and the problem
can be solved

» But the solution is found to be oscillatory for
cases with large convection

» This was the overshoot problem
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DISCRETISATION PRINCIPLES-III
Difficulties of Central Difference
The previous equation can be written as
apq)P =ag0p +ay0y,
S
where, ap=|————"%|,
Ax, 2
aW = [L_i__pu WJ
Ax, 2
ap = (aE +ay +pu|e —pu|w)
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REASONS FOR THE DIFFICULTY

The coefficient for ag can be written as

— 1 Anl A ) - /7 b\
— le Pulel_‘AE — 18 re
ap = 1- = 1--=
AXEL o J AXEL 2 J

where p, is defined as the cell Peclet number

The second term in the bracket can become
negative at large velocities.

A negative weight can give unphysical
solutions

e.g. (50 X2+ 100 X (-4))/(2-4) =-150
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THE REMEDY

» Better schemes can be derived from the analytical
solution of the convection-diffusion equation

The analytical solution subject to boundary
conditions,

0(x=0)=0,, 6(x=L)=0¢,
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is given by
pﬁ
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ANALYTICAL SOLUTION

EXPONENTIAL SCHEME-I

The values of the function and its derivative
at the control surface ‘e’ can be obtained as
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EXPONENTIAL SCHEME-II

 Similarly the values at w can be computed and
these can be substituted in Eq. (1) of slide 5 to get

ap¢P =agh +ay0y,

Pw
where, aEz( pu‘e } awz(puwe ] and apz(aE+aw+puL_pu‘w

e —1 e™ —1

D, = L

ag can be rewritten as e =
Axg

a — re Pe
Foaxg et -1

Note: ap =» QasP.,>>1 -5 Iy 5
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UPWIND SCHEME

When convection dominates

-P>>1
(I)e = (I)P and (l)w = (I)W (3 P
foru>>0
0!
(I)e =(I)E and (I)w =(I)P P=1
foru<<0 0, ~

* Evaluating gradient by linear
variation, we can write,

ap¢P =agh; +ay oy,
where, a; =D, +<—pu e,O>, ay, =D, +<pu

0 — L

)

€

apq)P =agfp +ay0y,
D _pu‘c 0> a :<pu
2 e 2 ) ) W

and a, = (aE +ay +pu‘c —pu‘w),

where, a, =(-pu

and a, = (aE +ay, +pu‘e _pu‘w )
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GENERALISATION OF ALL SCHEMES

All the schemes can be generalised using a function A(P)

ap¢P =ag0p +ayfy,

Scheme A(P)
where, a, =D,A(P.)+(-FE0), Conr 105 [A
Upwind 1
a, =D_A(P.|)+(F. .0} and
w =D, A(R,)+(F,.0) Hybrid (0. 1-0.5pp))
aP=(aE +aW+Fe—FW), . ‘P‘
Exponential M

W Dwt
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HYBRID SCHEME
» Properties of analytical
solution of ag/D, are:
»ag/D, = 1 at P.=0 ag/D,
»ag/D, =0 as P.>>1
» ag/D,— -P, as —P,>>1 1
d(az/D,) _ _
PTE T = 05 at P.=0
dp ot - 0 5
P

pu|

u
w,0>
2
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PRESSURE LINKED EQUATIONS
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ot dx dy
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>8P CHECKERBOARDING PROBLEM ' *°

» Early attempts at the solution led to oscillatory pressure
fields

» A possible interpretation is given below

Control volume integration of pressure term leads to

¢t 9
=5

w €
P, =‘Z'5<p§; pe) and p, =03py+pe) | g | o, o
N Jv_gdx =0.5(pw —Pg) Ay AX,

Equal increase of pressure in alternate nodes will
not affect velocity
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DRAWBACKS OF STAGGERED GRID

» Indices have to be carefully kept track

» Large number of coefficients have to be
carried along

» Non-staggered Methods have been
developed

» The principle is to manipulate the pressure
gradient terms

2:48 PM

Y-Momentum
—® —0 —@ ® Control Volume
}
Mass Balance
Control Volume | o e "9 e
1 I X-Momentum
\\ Control Volume
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4> 0® >0 >0 -0 -
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No interpolation of pressure required

2:48 PM 20/28
Discretisation of 2-D Transport Equation
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» Similar discretisation of mass balance will
yield

p|At _ p|0

PA—tPAXAy+ (pu|e —pu|W )Ay+ (pu|n —pu|S )AX =0

> Multiplying the above with ¢, and
subtracting from the discretised momentum
equation, we get

- ‘pprA {(pw—rg“jj (P(ﬁ ro? j ~(pu, puw)m}m
[(pw—rgfj { puo-rs? j (o, puSMP}Ax=(Sl.+SF¢P)AxAy

»Plugging the proflles as done earlier, we get

248 PMyiscretised of 2-D Transport Equation 22028

(Cont'd)
ap¢P =aghy +ay0y +aydy +agds+b
where, a, =D,A(P|)+(-F,0), a, =D,A(P))+(F,.0) ,
ay =D,A(R)+(~F,0), a
P09, Axdy
At

=D A(P)+(F.0) .
b=S AxAy+
and a, = (a5+aw+aN+a +pixAy SAxAy]

LAy , LAy , LA, TAc

Dc = s W > n s = 5
Ax, Ax,, Ayy Ayg

F,=pu| Ay, F,=pu| Ay, F,=pu| Ax, F,=pu| Ax,

pofo pf pF oy F
D, D, D, ' D,
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SIMPLE(Semi-IMplicit procedure for solving
Pressure Linked Equations)

1. Assume a pressure field and velocity field

2. Compute coefficients for x and y momentum
equations

3. Solve for u’s and v’s using x and y momentum
equations

4. Check whether it satisfies mass balance

5. Obtain a new guess for pressure field systematically
so that the resulting velocity would satisfy mass
balance

6. Repeat steps 2-5 till convergence is obtained
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The Pressure Correction Equation

Let p” be the assumed pressure field

X-momentum
aeu: zzanbu:b+be+(p;_p;)Ay 'n

<

Y-momentum

anV: :ZanbV:b +bn+(p;_pL)Ax s

If p is the correct pressure field then

aeue :Zanbunb +be +(pP _pE)Ay

— Axy T AX T

a'nVn = Zanbvnb +bn +(pP _pN)Ax
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The Pressure Correction Equation
(cont'd)

au, = A, (P —PpAY  a,v, =D a, v, +(py —py)AX

. : A . : A
u. =(pp _pE)a_y v, =(Ps _pN)l
a

€ n

‘ Ap‘PAxA +p. @ +u)-p, @ +u ))AY+

(. (v, +v)=p (v +v)Ax =0
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Details of the Procedure

1. Assume arbitrary u, v and p fields

2. Compute the coefficients for x and y momentum
equations on lines given in Eq. (33). Proper labelling of
indices have to be taken care of

3. Solve for u” and v* using computed coefficients in step
2 and assume pressure field in step 1

4. Compute mass imbalance (b) in Eq. (43).

5. If mass imbalance is low every where, then the obtained
u”, v* and the assumed p” are the solutions.

2:48 PM

where, a, =

26/28
The Pressure Correction Equation

(cont'd)
app'P = aEp'P + awpvw + avaN + aspg +b

A
pe Ay7 aW pw AY’ aN pn AX aS ps_xAx
a

e W n s

and a,=aj +ay +ay+ag,

b=(peu

=iy o, v, v a4 (PEPEIAXAY
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6.

7.
8.

9.
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Details of the Procedure (cont'd)

If step 5 is not satisfied, then obtain coefficients
for pressure correction equation Eq. (43).

Solve for p', Eq. (43)

Correct u,vandpas,p=p" +0 p,
u=u"+0,uandv=v" +0€VV whereo’s are
under relaxation coefficients to prevent the
procedure from diverging. Typical values these
are 0.5-0.7.

Repeat steps 2-8 as many times as is required to
satisfy step 5.
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