1

8 PM				2/
TRANSPORT EQUATIONS				
Generalised Transport Equation				
$\frac{\partial(\rho\phi)}{\partial t} + \frac{\partial}{\partial x} \left(\rho u\phi - \Gamma \frac{\partial\phi}{\partial x}\right) + \frac{\partial}{\partial y} \left(\rho v\phi - \Gamma \frac{\partial\phi}{\partial y}\right) = S$				
Conservation	Transported	Diffusion	Source Term	
	1	0		
Equation	variable	Coefficient		
Equation Mass	variable 1	0	0	
Equation Mass X-momentum	variable 1 u	0 µ	$\frac{0}{-\frac{\partial p}{\partial x} + \rho g_x}$	

8/28

2:48 PM 5/28 DISCRETISATION PRINCIPLES-II
$\left(\rho u\phi - \Gamma \frac{\partial \phi}{\partial x}\right)_{e} - \left(\rho u\phi - \Gamma \frac{\partial \phi}{\partial x}\right)_{w} = 0 (1)$
For linear variation of the variable, we can write $\phi_e = \frac{\phi_E + \phi_P}{2}, \ \phi_w = \frac{\phi_W + \phi_P}{2}, \ \frac{\partial \phi}{\partial x}\Big _e = \frac{\phi_E - \phi_P}{\Delta x_E}, \ \frac{\partial \phi}{\partial x}\Big _w = \frac{\phi_P - \phi_W}{\Delta x_W}$
Substitution results in
$\phi_{\rm E}\left(\frac{\rho u\big _{\rm e}}{2} - \frac{\Gamma_{\rm e}}{\Delta x_{\rm E}}\right) - \phi_{\rm W}\left(-\frac{\rho u\big _{\rm w}}{2} - \frac{\Gamma_{\rm w}}{\Delta x_{\rm W}}\right) + \phi_{\rm P}\left(\frac{\rho u\big _{\rm e}}{2} + \frac{\Gamma_{\rm e}}{\Delta x_{\rm E}} - \frac{\rho u\big _{\rm w}}{2} + \frac{\Gamma_{\rm w}}{\Delta x_{\rm W}}\right) = 0$
Central Difference Scheme

REASONS FOR THE DIFFICULTY

The coefficient for a_E can be written as $a_E = \frac{\Gamma_e}{\Delta x_E} \left(1 - \frac{\rho u |_e \Delta x_E}{2\Gamma_e} \right) = \frac{\Gamma_e}{\Delta x_E} \left(1 - \frac{P_e}{2} \right)$

2:48 PM

where p_e is defined as the cell Peclet number

The second term in the bracket can become negative at large velocities.

A negative weight can give unphysical solutions

e.g. (50 X 2 + 100 X (-4))/(2-4) = -150

2:48 PM		15/28				
GENERALISATION OF ALL SCHEMES						
All the schemes can be generalised using a function $A(P)$						
Q+_Q+						
$a_{\rm p}\phi_{\rm P}=a_{\rm E}\phi_{\rm E}+a_{\rm W}\phi_{\rm W},$	Scheme	A(P)				
	Central	1-0 5 P				
where, $a_E = D_e A(P_e) + \langle -F_e, 0 \rangle$,	Central	1-0.5				
$a = D \wedge (\mathbf{P}) + \langle \mathbf{F} \rangle $ and	Upwind	1				
$a_{\rm W} = D_{\rm w} A(\mathbf{r}_{\rm w}) + \langle \mathbf{r}_{\rm w}, 0 \rangle$ and	Hybrid	$\langle 0, 1 - 0.5 P \rangle$				
$a_{\rm P} = (a_{\rm E} + a_{\rm W} + F_{\rm e} - F_{\rm w}),$	Exponential	$\frac{ \mathbf{P} }{\mathbf{e}^{ \mathbf{P} }-1}$				
		~ ~				

2:48 PM	19/28
DRAWBACKS OF STAGGERED GRID	
 Indices have to be carefully kept track Large number of coefficients have to be carried along 	
Non-staggered Methods have been developed	
The principle is to manipulate the pressure gradient terms	e

Similar discretisation of mass balance will yield $\frac{\rho|_{p}^{\Delta t} - \rho|_{p}^{0}}{\Delta t} \Delta x \Delta y + (\rho u|_{e} - \rho u|_{w}) \Delta y + (\rho u|_{n} - \rho u|_{s}) \Delta x = 0$ Multiplying the above with $\varphi|_{p}^{dt}$ and subtracting from the discretised momentum equation, we get $\frac{\varphi|_{p}^{\Delta t} - \varphi|_{p}^{0}}{\Delta t} \rho_{p}^{0} \Delta x \Delta y + \left[\left(\rho u \varphi - \Gamma \frac{\partial \varphi}{\partial x} \right)_{e} - \left(\rho u \varphi - \Gamma \frac{\partial \varphi}{\partial x} \right)_{w} - \left(\rho u|_{e} - \rho u|_{w} \right) \varphi_{p} \right] \Delta y + \left[\left(\rho u \varphi - \Gamma \frac{\partial \varphi}{\partial x} \right)_{s} - \left(\rho u|_{n} - \rho u|_{s} \right) \varphi_{p} \right] \Delta x = (S_{e} + S_{p} \varphi_{p}) \Delta x \Delta y$ Plugging the profiles as done earlier, we get

PM	23/28
SI	1PLE(Semi-IMplicit procedure for solving Pressure Linked Equations)
1.	Assume a pressure field and velocity field
2.	Compute coefficients for x and y momentum equations
3.	Solve for u's and v's using x and y momentum equations
4.	Check whether it satisfies mass balance
5.	Obtain a new guess for pressure field systematically so that the resulting velocity would satisfy mass balance
6.	Repeat steps 2-5 till convergence is obtained

2:48 PM 25/28			
The Pressure Correction Equation (cont'd)			
$a_{e}u_{e}^{'} = \sum a_{nb}u_{nb}^{'} + (p_{P}^{'} - p_{E}^{'})\Delta y$ $a_{n}v_{n}^{'} = \sum a_{nb}v_{nb}^{'} + (p_{P}^{'} - p_{N}^{'})\Delta x$			
$u'_{e} = (p'_{P} - p'_{E}) \frac{\Delta y}{a_{e}}$ $v'_{n} = (p'_{P} - p'_{N}) \frac{\Delta x}{a_{n}}$			
Control volume integration of mass balance leads to			
$\frac{\rho \Big _{p}^{\Delta t} - \rho \Big _{p}^{0}}{\Delta t} \Delta x \Delta y + \left(\rho_{e} \left(u_{e}^{*} + u_{e}^{'}\right) - \rho_{w} \left(u_{w}^{*} + u_{w}^{'}\right)\right) \Delta y + \left(\rho_{e} \left(v_{n}^{*} + v_{n}^{'}\right) - \rho_{s} \left(v_{s}^{*} + v_{s}^{'}\right)\right) \Delta x = 0$			
Substitution of u_e^{-1} , v_n^{-1} from above and rearranging leads to			

2:48 PM

28/28

Details of the Procedure (cont'd)

- 6. If step 5 is not satisfied, then obtain coefficients for pressure correction equation Eq. (43).
- 7. Solve for p', Eq. (43)
- 8. Correct u, v and p as, $p = p^* + \alpha_p p'$, $u = u^* + \alpha_u u'$ and $v = v^* + \alpha_v v'$, where α 's are under relaxation coefficients to prevent the procedure from diverging. Typical values these are 0.5-0.7.
- 9. Repeat steps 2-8 as many times as is required to satisfy step 5.