

2:48 PM DISCRETISATION PRINCIPLES-1 ${ }^{4 / 28}$
Consider 1-D Convection-Diffusion Equation

$$
\frac{d}{d x}\left(\rho u \phi-\Gamma \frac{\partial \phi}{\partial x}\right)=0
$$

Control Volume Integration implies

$$
\int_{\mathrm{w}}^{\mathrm{e}} \frac{\mathrm{~d}}{\mathrm{dx}}\left(\rho \mathrm{u} \phi-\Gamma \frac{\mathrm{d} \phi}{\mathrm{dx}}\right) \mathrm{dx}=0
$$

2:48 PM
 DISCRETISATION PRINCIPLES-II

$$
\begin{equation*}
\left(\rho u \phi-\Gamma \frac{\partial \phi}{\partial x}\right)_{e}-\left(\rho u \phi-\Gamma \frac{\partial \phi}{\partial x}\right)_{w}=0 \tag{1}
\end{equation*}
$$

For linear variation of the variable, we can write

$$
\phi_{\mathrm{e}}=\frac{\phi_{\mathrm{E}}+\phi_{\mathrm{P}}}{2}, \phi_{\mathrm{w}}=\frac{\phi_{\mathrm{w}}+\phi_{\mathrm{P}}}{2},\left.\frac{\partial \phi}{\partial \mathrm{x}}\right|_{\mathrm{e}}=\frac{\phi_{\mathrm{E}}-\phi_{\mathrm{P}}}{\Delta \mathrm{x}_{\mathrm{E}}},\left.\frac{\partial \phi}{\partial \mathrm{x}}\right|_{\mathrm{w}}=\frac{\phi_{\mathrm{P}}-\phi_{\mathrm{W}}}{\Delta \mathrm{x}_{\mathrm{w}}}
$$

Substitution results in
$\phi_{E}\left(\frac{\left.\rho u\right|_{e}}{2}-\frac{\Gamma_{e}}{\Delta x_{E}}\right)-\phi_{w}\left(-\frac{\left.\rho u\right|_{w}}{2}-\frac{\Gamma_{w}}{\Delta x_{w}}\right)+\phi_{p}\left(\frac{\left.\rho u\right|_{e}}{2}+\frac{\Gamma_{e}}{\Delta x_{E}}-\frac{\left.\rho u\right|_{w}}{2}+\frac{\Gamma_{w}}{\Delta x_{w}}\right)=0$
Central Difference Scheme

2:48 PM
DISCRETISATION PRINCIPLES-III
Difficulties of Central Difference
The previous equation can be written as $\mathrm{a}_{\mathrm{p}} \phi_{\mathrm{P}}=\mathrm{a}_{\mathrm{E}} \phi_{\mathrm{E}}+\mathrm{a}_{\mathrm{w}} \phi_{\mathrm{w}}$,
where, $a_{E}=\left(\frac{\Gamma_{e}}{\Delta x_{E}}-\frac{\left.\rho u\right|_{e}}{2}\right)$,
$a_{W}=\left(\frac{\Gamma_{w}}{\Delta x_{W}}+\frac{\left.\rho u\right|_{w}}{2}\right)$
$a_{P}=\left(a_{E}+a_{W}+\left.\rho u\right|_{e}-\left.\rho u\right|_{w}\right)$

2:48 PM

8/28

REASONS FOR THE DIFFICULTY

The coefficient for a_{E} can be written as

$$
\mathrm{a}_{\mathrm{E}}=\frac{\Gamma_{\mathrm{e}}}{\Delta \mathrm{x}_{\mathrm{E}}}\left(1-\frac{\rho \mathrm{u}_{\mathrm{e}} \Delta \mathrm{x}_{\mathrm{E}}}{2 \Gamma_{\mathrm{e}}}\right)=\frac{\Gamma_{\mathrm{e}}}{\Delta \mathrm{x}_{\mathrm{E}}}\left(1-\frac{\mathrm{P}_{\mathrm{e}}}{2}\right)
$$

where p_{e} is defined as the cell Peclet number
The second term in the bracket can become negative at large velocities.

A negative weight can give unphysical solutions
e.g. $(50 \times 2+100 X(-4)) /(2-4)=-150$

2:48 PM	PM THE REMEDY $\quad 9 / 28$
Better schemes can be derived from the analytical solution of the convection-diffusion equation	
The analytical solution subject to boundary conditions, $\phi(\mathrm{x}=0)=\phi_{0}, \quad \phi(\mathrm{x}=\mathrm{L})=\phi_{\mathrm{L}}$ is given by	
	$\frac{\phi-\phi_{0}}{\phi_{\mathrm{L}}-\phi_{0}}=\left(\frac{\mathrm{e}^{\frac{\rho \mathrm{ux}}{\Gamma}}-1}{\mathrm{e}^{\frac{\mathrm{puL}}{\Gamma}}-1}\right)$

$$
\left.\frac{\partial \phi}{\partial \mathrm{x}}\right|_{\mathrm{e}}=\left(\phi_{\mathrm{E}}-\phi_{\mathrm{P}}\right)\left(\frac{\mathrm{e}^{\frac{\left.\rho u\right|_{\mathrm{e}} \delta x_{\mathrm{e}}}{\Gamma_{\mathrm{e}}}}}{\mathrm{e}^{\frac{\rho u u_{\mathrm{c}} \Delta x_{\mathrm{E}}}{\Gamma_{\mathrm{e}}}}-1}\right) \frac{\left.\rho u\right|_{\mathrm{e}}}{\Gamma_{\mathrm{e}}}
$$

2:48 PM EXPONENTIAL SCHEME-II

12/28

- Similarly the values at w can be computed and these can be substituted in Eq. (1) of slide 5 to get

$$
\mathrm{a}_{\mathrm{p}} \phi_{\mathrm{P}}=\mathrm{a}_{\mathrm{E}} \phi_{\mathrm{E}}+\mathrm{a}_{\mathrm{w}} \phi_{\mathrm{w}},
$$

where, $a_{E}=\left(\frac{\left.\rho u\right|_{e}}{e^{p_{c}}-1}\right), a_{w}=\left(\frac{\left.\rho u\right|_{\left.\right|_{w}} e^{P_{w}}}{e^{P_{w}}-1}\right)$ and $a_{P}=\left(a_{E}+a_{w}+\left.\rho u\right|_{e}-\left.\rho u\right|_{w}\right)$
a_{E} can be rewritten as
$\mathrm{a}_{\mathrm{E}}=\frac{\Gamma_{\mathrm{e}}}{\Delta \mathrm{x}_{\mathrm{E}}}\left(\frac{\mathrm{P}_{\mathrm{e}}}{\mathrm{e}^{\mathrm{P}_{\mathrm{e}}}-1}\right)$
Note: $\mathrm{a}_{\mathrm{E}} \rightarrow 0$ as $\mathrm{P}_{\mathrm{e}} \gg 1$
$D_{e}=\frac{\Gamma_{c}}{\Delta x_{E}}$

2:48 PM

UPWIND SCHEME

When convection dominates

$$
\begin{aligned}
& \phi_{\mathrm{e}}=\phi_{\mathrm{P}} \quad \text { and } \quad \phi_{\mathrm{w}}=\phi_{\mathrm{W}} \\
& \text { for } \mathrm{u} \gg 0 \\
& \phi_{\mathrm{e}}=\phi_{\mathrm{E}} \text { and } \quad \phi_{\mathrm{w}}=\phi_{\mathrm{P}} \\
& \text { for } \mathrm{u} \ll 0
\end{aligned}
$$

- Evaluating gradient by linear variation, we can write,

$$
\mathrm{a}_{\mathrm{p}} \phi_{\mathrm{P}}=\mathrm{a}_{\mathrm{E}} \phi_{\mathrm{E}}+\mathrm{a}_{\mathrm{W}} \phi_{\mathrm{W}}
$$

where, $\mathrm{a}_{\mathrm{E}}=\mathrm{D}_{\mathrm{e}}+\left\langle-\left.\rho \mathrm{u}\right|_{\mathrm{e}}, 0\right\rangle, \quad \mathrm{a}_{\mathrm{w}}=\mathrm{D}_{\mathrm{w}}+\left\langle\left.\rho \mathrm{u}\right|_{\mathrm{w}}, 0\right\rangle$
and $a_{P}=\left(a_{E}+a_{w}+\left.\rho u\right|_{e}-\left.\rho u\right|_{w}\right)$,

2:48 PM
HYBRID SCHEME
$>$ Properties of analytical solution of $\mathrm{a}_{\mathrm{E}} / \mathrm{D}_{\mathrm{e}}$ are:
$>\mathrm{a}_{\mathrm{E}} / \mathrm{D}_{\mathrm{e}}=1 \quad$ at
$>\mathrm{a}_{\mathrm{E}} / \mathrm{D}_{\mathrm{e}} \rightarrow 0$
$>\mathrm{a}_{\mathrm{E}} / \mathrm{D}_{\mathrm{e}} \rightarrow-\mathrm{P}_{\mathrm{e}}$ $>\frac{d\left(a_{E} / D_{e}\right)}{d P_{e}}=-0.5$
as
-
as $-\mathrm{P}_{\mathrm{e}} \gg$
$a_{p} \phi_{P}=a_{E} \phi_{E}+a_{W} \phi_{W}$, where, $a_{E}=\left\langle-\left.\rho u\right|_{e}, D_{e}-\frac{\left.\rho u\right|_{e}}{2}, 0\right\rangle, a_{w}=\left\langle\left.\rho u\right|_{w}, D_{w}+\frac{\left.\rho u\right|_{w}}{2}, 0\right\rangle$ and $\mathrm{a}_{\mathrm{p}}=\left(\mathrm{a}_{\mathrm{E}}+\mathrm{a}_{\mathrm{w}}+\left.\rho \mathrm{u}\right|_{\mathrm{e}}-\left.\rho \mathrm{u}\right|_{\mathrm{w}}\right)$,

2:48 PM
16/28

PRESSURE LINKED EQUATIONS

$$
\frac{\partial \rho}{\partial t}+\frac{\partial \rho u}{\partial x}+\frac{\partial \rho v}{\partial y}=0
$$

$$
\frac{\partial \rho u}{\partial t}+\frac{\partial}{\partial x}\left(\rho u u-\mu \frac{\partial u}{\partial x}\right)+\frac{\partial}{\partial y}\left(\rho u u-\mu \frac{\partial u}{\partial y}\right)=-\frac{\partial p}{\partial x}+\rho g_{x}
$$

$$
\frac{\partial \rho \mathrm{v}}{\partial \mathrm{t}}+\frac{\partial}{\partial \mathrm{x}}\left(\rho \mathrm{puv}-\mu \frac{\partial v}{\partial \mathrm{x}}\right)+\frac{\partial}{\partial y}\left(\rho \mathrm{puv}-\mu \frac{\partial v}{\partial y}\right)=-\frac{\partial \mathrm{p}}{\partial y}+\rho \mathrm{g}_{\mathrm{y}}
$$

There is no transport equation for p

Equal increase of pressure in alternate nodes will not affect velocity

$>$ Similar discretisation of mass balance will yield
$\frac{\left.\rho\right|_{\mathrm{P}} ^{\Delta \mathrm{t}}-\left.\rho\right|_{\mathrm{p}} ^{0}}{\Delta \mathrm{t}} \Delta \mathrm{x} \Delta \mathrm{y}+\left(\left.\rho \mathrm{u}\right|_{\mathrm{e}}-\left.\rho \mathrm{u}\right|_{\mathrm{w}}\right) \Delta \mathrm{y}+\left(\left.\rho \mathrm{u}\right|_{\mathrm{n}}-\left.\rho \mathrm{u}\right|_{\mathrm{s}}\right) \Delta \mathrm{x}=0$
$>$ Multiplying the above with $\varphi_{p}^{\Delta t}$ and subtracting from the discretised momentum equation, we get
$\frac{\phi_{p}^{\Delta t}-\left.\phi\right|_{p} ^{0}}{\Delta t} \rho_{p}^{0} \Delta x \Delta y+\left[\left(\rho u \phi-\Gamma \frac{\partial \phi}{\partial x}\right)_{e}-\left(\rho u \phi-\Gamma \frac{\partial \phi}{\partial x}\right)_{w}-\left(\left.\rho u\right|_{e}-\left.\rho u\right|_{w} \phi_{p}\right] \Delta y+\right.$ $\left[\left(\rho u \phi-\Gamma \frac{\partial \phi}{\partial y}\right)_{n}-\left(\rho u \phi-\Gamma \frac{\partial \phi}{\partial x}\right)_{s}-\left(\left.\rho u\right|_{n}-\rho u u_{s}\right) \phi_{p}\right] \Delta x=\left(S_{c}+S_{p} \phi_{p}\right) \Delta x \Delta y$
$\underset{2: 48 \mathrm{PM}}{>\text { Plugging }}$ the profiles as done earlier, we get ${ }_{21}$

2:48 PM 24/28

The Pressure Correction Equation

Let p^{*} be the assumed pressure field
X-momentum
$\mathrm{a}_{\mathrm{c}} \mathrm{u}_{\mathrm{e}}^{*}=\sum \mathrm{a}_{\mathrm{nb}} \mathrm{u}_{\mathrm{nb}}^{*}+\mathrm{b}_{\mathrm{e}}+\left(\mathrm{p}_{\mathrm{p}}^{*}-\mathrm{p}_{\mathrm{E}}^{*}\right) \Delta \mathrm{y}$
Y-momentum
$a_{n} v_{n}^{*}=\sum a_{n b} v_{\mathrm{nb}}^{*}+b_{\mathrm{n}}+\left(\mathrm{p}_{\mathrm{p}}^{*}-\mathrm{p}_{\mathrm{N}}^{*}\right) \Delta \mathrm{x}$
If p is the correct pressure field then

$\mathrm{a}_{\mathrm{e}} \mathrm{u}_{\mathrm{e}}=\sum \mathrm{a}_{\mathrm{nb}} \mathrm{u}_{\mathrm{nb}}+\mathrm{b}_{\mathrm{e}}+\left(\mathrm{p}_{\mathrm{P}}-\mathrm{p}_{\mathrm{E}}\right) \Delta \mathrm{y}$
$\mathrm{a}_{\mathrm{n}} \mathrm{v}_{\mathrm{n}}=\sum \mathrm{a}_{\mathrm{nb}} \mathrm{v}_{\mathrm{nb}}+\mathrm{b}_{\mathrm{n}}+\left(\mathrm{p}_{\mathrm{p}}-\mathrm{p}_{\mathrm{N}}\right) \Delta \mathrm{x}$ balance
6. Repeat steps $2-5$ till convergence is obtained

SIMPLE(Semi-IMplicit procedure for solving Pressure Linked Equations)

1. Assume a pressure field and velocity field
2. Compute coefficients for x and y momentum equations
3. Solve for u 's and v's using x and y momentum equations
4. Check whether it satisfies mass balance
5. Obtain a new guess for pressure field systematically so that the resulting velocity would satisfy mass
Kepeat steps <-כ un convergence is odtamea

Subtraction of the approximate fields
from the correct fields lead to

$2: 48 \mathrm{PM}$	
The Pressure Correction Equation	
(cont'd)	

Control volume integration of mass balance leads to

$$
\frac{\rho_{p}^{\Delta t}-\left.\rho\right|_{p} ^{0}}{\Delta t} \Delta x \Delta y+\left(\rho_{c}\left(u_{e}^{*}+u_{e}^{\prime}\right)-\rho_{w}\left(u_{w}^{*}+u_{w}^{\prime}\right) \Delta y+\right.
$$

$$
\left(\rho_{c}\left(v_{n}^{*}+v_{n}^{\prime}\right)-\rho_{s}\left(v_{s}^{*}+v_{s}^{\prime}\right) \Delta x=0\right.
$$

Substitution of $u_{\mathrm{e}}{ }^{\prime}, \mathrm{v}_{\mathrm{n}}{ }^{\prime}$ from above and rearranging leads to

2:48 PM 27/28
 Details of the Procedure

1. Assume arbitrary u, v and p fields
2. Compute the coefficients for x and y momentum equations on lines given in Eq. (33). Proper labelling of indices have to be taken care of
3. Solve for u^{*} and v^{*} using computed coefficients in step 2 and assume pressure field in step 1
4. Compute mass imbalance (b) in Eq. (43).
5. If mass imbalance is low every where, then the obtained $\mathrm{u}^{*}, \mathrm{v}^{*}$ and the assumed p^{*} are the solutions.

2:48 PM | The Pressure Correction Equation |
| :---: |
| (Cont'd) |

\[\)| $a_{p} p_{P}^{\prime}=a_{E} p_{P}^{\prime}+a_{w} p_{w}^{\prime}+a_{N} p_{N}^{\prime}+a_{S} p_{S}^{\prime}+b$ |
| :--- |

\]

where, $a_{E}=\rho_{e} \frac{\Delta y}{a_{e}} \Delta y, a_{w}=\rho_{w} \frac{\Delta y}{a_{w}} \Delta y, a_{N}=\rho_{n} \frac{\Delta x}{a_{n}} \Delta x, a_{S}=\rho_{s} \frac{\Delta x}{a_{s}} \Delta x$,
and $\quad a_{P}=a_{E}+a_{w}+a_{N}+a_{S}$,
$b=\left(\rho_{e} u_{e}^{*}-\rho_{w} u_{w}^{*}\right) \Delta y+\left(\rho_{n} v_{n}^{*}-\rho_{s} v_{s}^{*}\right) \Delta x+\frac{\left(\rho_{P}^{0}-\rho_{P}^{\Delta t}\right) \Delta x \Delta y}{\Delta t}$
The source term for pressure correction is the mass
imbalance. Thus the correction will cease when
the mass balance is satisfied.
$2: 48 \mathrm{PM} \quad 28 / 28$

Details of the Procedure (cont'd)

6. If step 5 is not satisfied, then obtain coefficients for pressure correction equation Eq. (43).
7. Solve for p^{\prime}, Eq. (43)
8. Correct u, v and p as, $\mathrm{p}=\mathrm{p}^{*}+\alpha_{\mathrm{p}} \mathrm{p}^{\prime}$, $u=u^{*}+\alpha_{u} u^{\prime}$ and $v=v^{*}+\alpha_{v} \mathrm{v}^{\prime}$, where α^{\prime} s are under relaxation coefficients to prevent the procedure from diverging. Typical values these are 0.5-0.7.
9. Repeat steps $2-8$ as many times as is required to satisfy step 5 .
