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TRANSPORT EQUATIONS 
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DOMAIN DISCRETISATION 

� The domain is divided into nodes and control faces are 
kept at the middle of these nodes 

� The problem is to solve for the unknowns at the nodes 
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DISCRETISATION PRINCIPLES-1 

Consider 1-D Convection-Diffusion Equation 
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DISCRETISATION PRINCIPLES-II 
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For linear variation of the variable, we can write 
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Substitution results in 

Central Difference Scheme 
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Difficulties of Central Difference 
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DISCRETISATION PRINCIPLES-III 

The previous equation can be written as 
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�For every node, a similar equation can be written 

�If boundaries are known, we can write N 

equations for N interior nodes and the problem 

can be solved 

�But the solution is found to be oscillatory for 

cases with large convection 

�This was the overshoot problem 

DISCRETISATION PRINCIPLES-IV 
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REASONS FOR THE DIFFICULTY 
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The coefficient for aE can be written as 

   The second term in the bracket can become 

negative at large velocities. 

where pe is defined as the cell Peclet number 

   A negative weight can give unphysical 

solutions 

   e.g. (50 X 2 + 100 X (-4))/(2-4) = -150 
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THE REMEDY 

�  Better schemes  can be derived from the analytical 
solution of the convection-diffusion equation 

The analytical solution subject to boundary 

conditions,  
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ANALYTICAL SOLUTION 
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EXPONENTIAL SCHEME-I 

  The values of the function and its derivative 

at the control surface ‘e’ can be obtained as 
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EXPONENTIAL SCHEME-II 

aE can be rewritten as 
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Note:  aE        0 as Pe >> 1  

• Similarly the values at w can be computed and 

these can be substituted in Eq. (1) of slide 5 to get 
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When convection dominates 

UPWIND SCHEME 
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• Evaluating gradient by linear 

variation, we can write, 

HYBRID SCHEME 

� Properties of analytical 

solution of aE/De are: 

�aE/De  =   1             at    Pe = 0 

�aE/De          0             as    Pe >> 1 

�aE/De        -Pe                 as  –Pe >> 1 

�                          =  -0.5    at    Pe = 0   
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All the schemes can be generalised using a function 

GENERALISATION OF ALL  SCHEMES 
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PRESSURE LINKED EQUATIONS 

y

x

g
y

p

y

v
uv

yx

v
uv

xt

v

g
x

p

y

u
uu

yx

u
uu

xt

u

0
y

v

x

u

t

ρ+
∂

∂
−=









∂

∂
µ−ρ

∂

∂
+








∂

∂
µ−ρ

∂

∂
+

∂

ρ∂

ρ+
∂

∂
−=









∂

∂
µ−ρ

∂

∂
+








∂

∂
µ−ρ

∂

∂
+

∂

ρ∂

=
∂

ρ∂
+

∂

ρ∂
+

∂

ρ∂

There is no transport equation for p 
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CHECKERBOARDING PROBLEM 

Control volume integration of pressure term leads to 
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�Early attempts at the solution led to oscillatory pressure 

fields 

�A possible interpretation is given below 

   Equal increase of pressure in alternate nodes will 

not affect velocity 
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REMEDY – THE STAGGERED GRID 

No interpolation of pressure required 

X-Momentum 

Control Volume 

Y-Momentum 

Control Volume 

Mass Balance 

Control Volume 
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DRAWBACKS OF STAGGERED GRID 

�Indices have to be carefully kept track 

�Large number of coefficients have to be 

carried along 

�Non-staggered Methods have been 

developed 

�The principle is to manipulate the pressure 

gradient terms  
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Discretisation of 2-D Transport Equation 
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�Similar discretisation of mass balance will 

yield  

( ) ( ) 0xuuyuuyx
t snwe

0

P

t

P =∆ρ−ρ+∆ρ−ρ+∆∆
∆

ρ−ρ
∆

�Multiplying the above with        and 

subtracting from the discretised momentum 

equation, we get     

t∆

P
φ

( )

( ) ( ) yxSSxuu
x

u
y

u

yuu
x

u
x

uyx
t

PpcPsn
sn

Pwe
we

p
P

t

P

∆∆+=∆











−−−









∂

∂
Γ−−









∂

∂
Γ−

+∆







−−









∂

∂
Γ−−









∂

∂
Γ−+∆∆

∆

−
∆

φφρρ
φ

φρ
φ

φρ

φρρ
φ

φρ
φ

φρρ
φφ

0

0

�Plugging  the profiles as done earlier, we get 
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Discretised of 2-D Transport Equation 
(Cont’d) 
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SIMPLE(Semi-IMplicit procedure for solving  
Pressure Linked Equations) 

1. Assume a pressure field and velocity field 

2. Compute coefficients for x and y momentum 
equations 

3. Solve for u’s and v’s using x and y momentum 
equations 

4. Check whether it satisfies mass balance 

5. Obtain a new guess for pressure field systematically 
so that the resulting velocity would satisfy mass 
balance 

6. Repeat steps 2-5 till convergence is obtained 
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The Pressure Correction Equation 
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The Pressure Correction Equation  
(cont’d) 

    Control volume integration of mass balance leads to 
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   Substitution of ue', vn' from above 
and rearranging leads to 
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The Pressure Correction Equation  
(cont’d) 

   The source term for pressure correction is the mass 
imbalance. Thus the correction will cease when 
the mass balance is satisfied. 
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Details of the Procedure 

 

1. Assume arbitrary u, v and p fields 

2. Compute the coefficients for x and y momentum 

equations on lines given in Eq. (33). Proper labelling of 

indices have to be taken care of 

3. Solve for u* and v* using computed coefficients in step 

2 and assume pressure field in step 1 

4. Compute mass imbalance (b) in Eq. (43). 

5. If mass imbalance is low every where, then the obtained 

u*, v* and the assumed p* are the solutions. 
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Details of the Procedure (cont’d) 

6.  If step 5 is not satisfied, then obtain coefficients 

for pressure correction equation Eq. (43).  

7.   Solve for p', Eq. (43) 

8.  Correct u, v and p as, p = p* +      p',    

      u = u* +      u' and v = v* +      v', where   ’s are 

under relaxation coefficients to prevent the 

procedure from diverging. Typical values these 

are 0.5-0.7.  

9.  Repeat steps 2-8 as many times as is required to 

satisfy step 5. 
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