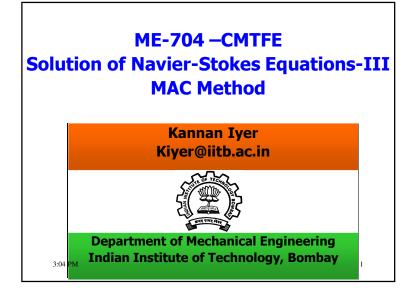
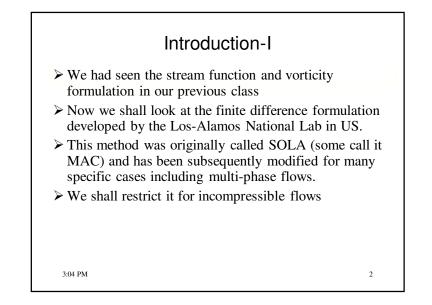
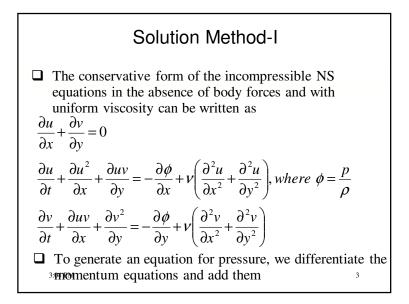
1





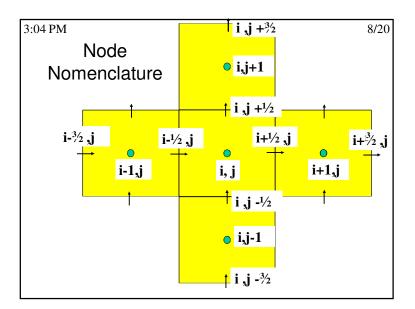


3:04 PM Solution Method-II	4/20
□ This is done as follows	
$\frac{\partial}{\partial x} \left(\frac{\partial u}{\partial t} + \frac{\partial u^2}{\partial x} + \frac{\partial uv}{\partial y} \right) = \frac{\partial}{\partial x} \left(-\frac{\partial \phi}{\partial x} + v \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right) \right)$	
$\frac{\partial}{\partial y} \left(\frac{\partial v}{\partial t} + \frac{\partial uv}{\partial x} + \frac{\partial v^2}{\partial y} \right) = \frac{\partial}{\partial y} \left(-\frac{\partial \phi}{\partial y} + v \left(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} \right) \right)$	
□ To simplify matters, let us first look at LHS	
$\frac{\partial}{\partial t} \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \right) + \frac{\partial^2 u^2}{\partial x^2} + \frac{\partial^2 v^2}{\partial y^2} + 2 \frac{\partial^2 u v}{\partial x \partial y}$	
$\Rightarrow \frac{\partial D}{\partial t} + \frac{\partial^2 u^2}{\partial x^2} + \frac{\partial^2 v^2}{\partial y^2} + 2\frac{\partial^2 uv}{\partial x \partial y}, \text{ where, } D = \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y}\right)$	$\left(\frac{v}{v}\right)$

3:04 PM Solution Method-III	5/20
□ Looking at RHS	
$\frac{\partial}{\partial x} \left(-\frac{\partial}{\partial x} \phi + \nu \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right) \right) + \frac{\partial}{\partial y} \left(-\frac{\partial}{\partial y} \phi + \nu \left(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} \right) \right)$	
$\Rightarrow -\left(\frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2}\right) + \nu \left(\frac{\partial}{\partial x} \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}\right) + \frac{\partial}{\partial y} \left(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2}\right)\right)$	
$\Rightarrow \nu \left(\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \right) \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \right) \right) - \left(\frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} \right)$	
$\Rightarrow \nu \left(\frac{\partial^2 D}{\partial x^2} + \frac{\partial^2 D}{\partial y^2} \right) - \left(\frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} \right)$	

3:04 PM	Solution Method-IV	6/20	
Thus	s the Poisson equation for pressure is		
$\frac{\partial}{\partial t} \left(\frac{\partial u}{\partial x} + \right)$	$\frac{\partial}{\partial t} \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \right) + \frac{\partial^2 u^2}{\partial x^2} + \frac{\partial^2 v^2}{\partial y^2} + 2 \frac{\partial^2 u v}{\partial x \partial y} =$		
	$\nu \left(\frac{\partial^2 D}{\partial x^2} + \frac{\partial^2 D}{\partial y^2} \right) - \left(\frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} \right)$		
$\left(\frac{\partial^2 \phi}{\partial x^2}\right)$	$+\frac{\partial^2 \phi}{\partial y^2} = -\frac{\partial}{\partial t} (D) - \frac{\partial^2 u^2}{\partial x^2} - \frac{\partial^2 v^2}{\partial y^2} - 2\frac{\partial^2 uv}{\partial x \partial y} +$		
	$\nu \left(\frac{\partial^2 D}{\partial x^2} + \frac{\partial^2 D}{\partial y^2} \right)$		
□ Note	that D has not been taken as 0 as this gives mor	e	
accura	ate solution due to D not being zero exactly		

3:04 PM Solution Method-V 7/20			
	Staggered concept is used to avoid checker boarding		
	The method is explicit and uses simple central differencing.		
	For a given initial velocity and pressure distribution, the velocities are advanced for one time step using FTCS method.		
	Having obtained the velocities, new pressure distribution is obtained by solving the pressure Poisson equation. However, we need to derive the boundary conditions for ϕ		
	Thus we have advanced the velocities and pressure by one time step.		
	Similarly they are obtained for as many time steps as is desired.		



3:04 PM u-Velocity Update	9/20
$\frac{\partial u}{\partial t} + \frac{\partial u^2}{\partial x} + \frac{\partial uv}{\partial y} = -\frac{\partial \phi}{\partial x} + v \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right)$	
$\frac{u_{i+\frac{1}{2},i}^{n+1} - u_{i+\frac{1}{2},i}}{\delta t} = \frac{(u_{i,i})^2 - (u_{i+1,i})^2}{\delta x}$	
$+ \frac{(u_{i+\frac{1}{2}, i-\frac{1}{2}})(v_{i+\frac{1}{2}, i-\frac{1}{2}}) - (u_{i+\frac{1}{2}, i+\frac{1}{2}})(v_{i+\frac{1}{2}, i+\frac{1}{2}})}{\delta y}$	
$+ \frac{\varphi_{i,i} - \varphi_{i+1,i}}{\delta x}$	
$+ \frac{u_{i+\frac{3}{2},i} + u_{i-\frac{1}{2},i} - 2u_{i+\frac{1}{2},i}}{\delta x^2}$	
+ $\frac{u_{i+\frac{1}{2},i+1} + u_{i+\frac{1}{2},i-1} - 2u_{i+\frac{1}{2},i}}{\delta y^2}$	

3:04 PM v-Velocity Update 10/20

$$\frac{v_{i,j+\frac{1}{2}}^{n+1} - v_{i,j+\frac{1}{2}}}{\delta t} = \frac{(v_{i,j})^2 - (v_{i,i+1})^2}{\delta y}$$
+ $\frac{(u_{i-\frac{1}{2},i+\frac{1}{2}})(v_{i-\frac{1}{2},i+\frac{1}{2}}) - (u_{i+\frac{1}{2},i+\frac{1}{2}})(v_{i+\frac{1}{2},i+\frac{1}{2}})}{\delta x}$
+ $\frac{\varphi_{i,j} - \varphi_{i,j+1}}{\delta y}$
+ $\frac{v_{i+1,i+\frac{1}{2}} + v_{i-1,j+\frac{1}{2}} - 2v_{i,i+\frac{1}{2}}}{\delta x^2}$
+ $\frac{v_{i,j+\frac{1}{2}} + v_{i,j-\frac{1}{2}} - 2v_{i,j+\frac{1}{2}}}{\delta y^2}$

3:04 PM Interpolations 11/20

$$u_{i+\frac{1}{2},i+\frac{1}{2}} \equiv \frac{1}{2}(u_{i+\frac{1}{2},i} + u_{i+\frac{1}{2},i+1}),$$

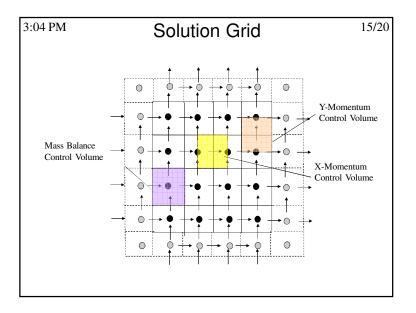
$$v_{i+\frac{1}{2},i+\frac{1}{2}} \equiv \frac{1}{2}(v_{i,i+\frac{1}{2}} + v_{i+1,i+\frac{1}{2}}),$$

$$u_{i,j} \equiv \frac{1}{2}(u_{i-\frac{1}{2},i} + u_{i+\frac{1}{2},i}),$$

$$v_{i,j} \equiv \frac{1}{2}(v_{i,j-\frac{1}{2}} + v_{i,j+\frac{1}{2}}).$$

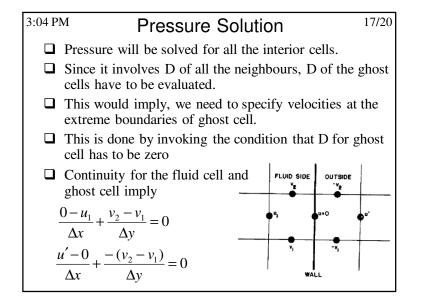
^{3:04 PM} Discretised Pressure Poisson Eq. ^{12/20}
$$\left(\frac{\partial^{2}\phi}{\partial x^{2}} + \frac{\partial^{2}\phi}{\partial y^{2}}\right) = -\frac{\partial}{\partial t}(D) - \frac{\partial^{2}u^{2}}{\partial x^{2}} - \frac{\partial^{2}v^{2}}{\partial y^{2}} - 2\frac{\partial^{2}uv}{\partial x\partial y} + v\left(\frac{\partial^{2}D}{\partial x^{2}} + \frac{\partial^{2}D}{\partial y^{2}}\right)$$
$$\frac{D_{i,i}^{n+1} - D_{i,i}}{\delta t} = -Q_{i,i} - \frac{\varphi_{i+1,i} + \varphi_{i-1,i} - 2\varphi_{i,i}}{\delta x^{2}}$$
$$- \frac{\varphi_{i,i+1} + \varphi_{i,i-1} - 2\varphi_{i,i}}{\delta y^{2}}$$
$$+ v\left(\frac{D_{i+1,i} + D_{i-1,i} - 2D_{i,i}}{\delta x^{2}}\right),$$

^{3:04 PM} Source Term for Pressure Poisson Eq. ^{13/20}
$\left(\frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2}\right) = -\frac{\partial}{\partial t}(D) - \frac{\partial^2 u^2}{\partial x^2} - \frac{\partial^2 v^2}{\partial y^2} - 2\frac{\partial^2 uv}{\partial x \partial y} + v\left(\frac{\partial^2 D}{\partial x^2} + \frac{\partial^2 D}{\partial y^2}\right)$
$Q_{i,j} = \frac{(u_{i+1,j})^2 + (u_{i-1,j})^2 - 2(u_{i,j})^2}{\delta x^2}$
$+ \frac{(v_{i,j+1})^2 + (v_{i,j-1})^2 - 2(v_{i,j})^2}{\delta y^2} + \frac{2}{\delta x \ \delta y}$
$\cdot [(u_{i+\frac{1}{2},i+\frac{1}{2}})(v_{i+\frac{1}{2},i+\frac{1}{2}}) + (u_{i-\frac{1}{2},i-\frac{1}{2}})(v_{i-\frac{1}{2},i-\frac{1}{2}})$
$-(u_{i+\frac{1}{2},i-\frac{1}{2}})(v_{i+\frac{1}{2},i-\frac{1}{2}})-(u_{i-\frac{1}{2},i+\frac{1}{2}})(v_{i-\frac{1}{2},i+\frac{1}{2}})].$

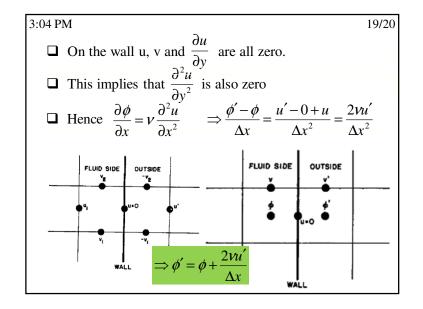


3:04 PM	Pressure Poisson Solution	14/20
$\varphi_{i+1,j}$	$\frac{1}{\delta x^2} + \varphi_{i-1,j} - 2\varphi_{i,j}$	
	$+\frac{\varphi_{i,j+1}+\varphi_{i,j-1}-2\varphi_{i,j}}{\delta y^2}=-h$,
$R_{i,i} \equiv Q_i$	$u_{i,i} = \frac{D_{i,i}}{\delta t} - \nu \left(\frac{D_{i+1,i} + D_{i-1,i} - 2D_{i,i}}{\delta x^2} \right)$	
	$+ \frac{D_{i,j+1} + D_{i,j-1} - 2D_{i,j}}{\delta y^2} \Big)$	

3:04 PM	^{04 PM} Boundary Conditions ^{16/2}				16/20
	1	ternal velocities required in the ghost cells have to be ecified using boundary conditions			
	We shall restrict ourselve	e shall restrict ourselves to no slip wall conditions.			ons.
i		e external velocities are specified such that linear erpolations on the boundary shall satisfy the required undary condition.			
	This implies v' = -v for vertical wall.		FLUID SIDE	OUTSIDE	
	Similarly u' = -u for orizontal walls.		÷.	¢'	
r c	We shall discuss the pressure boundary condition in next few				
S	lides		WAI	LL	



)4 P	M 18/2
	Addition of the two equations imply
	u' = u
	Thus all the exterior velocities are equal to the corresponding interior velocity
The boundary condition for pressure for vertical wa can be obtained from the steady momentum equation follows:	
	$\frac{\partial u^2}{\partial x} + \frac{\partial uv}{\partial y} = -\frac{\partial \phi}{\partial x} + \nu \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}\right)$
	$\Rightarrow u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} = -\frac{\partial \phi}{\partial x} + v \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right)$



3:04 PM	20/20
□ Thus for right wall	$\phi' = \phi + \frac{2\nu u'}{\Delta x}$
□ For left wall	$\phi' = \phi - \frac{2\nu u'}{\Delta x}$
□ For top wall	$\phi' = \phi + \frac{2\nu \ v'}{\Delta y}$
□ For bottom wall	$\phi' = \phi - \frac{2\nu \ v'}{\Delta y}$
□ That completes all t	