ME-704 -CMTFE
 Solution of Navier-Stokes Equations-III MAC Method

Introduction-I

$>$ We had seen the stream function and vorticity formulation in our previous class
$>$ Now we shall look at the finite difference formulation developed by the Los-Alamos National Lab in US.
$>$ This method was originally called SOLA (some call it MAC) and has been subsequently modified for many specific cases including multi-phase flows.
$>$ We shall restrict it for incompressible flows

Solution Method-I

- The conservative form of the incompressible NS equations in the absence of body forces and with uniform viscosity can be written as
$\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}=0$
$\frac{\partial u}{\partial t}+\frac{\partial u^{2}}{\partial x}+\frac{\partial u v}{\partial y}=-\frac{\partial \phi}{\partial x}+v\left(\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}\right)$, where $\phi=\frac{p}{\rho}$
$\frac{\partial v}{\partial t}+\frac{\partial u v}{\partial x}+\frac{\partial v^{2}}{\partial y}=-\frac{\partial \phi}{\partial y}+v\left(\frac{\partial^{2} v}{\partial x^{2}}+\frac{\partial^{2} v}{\partial y^{2}}\right)$
- To generate an equation for pressure, we differentiate the ${ }^{3}$ momentum equations and add them \qquad

Solution Method-II

4/20

- This is done as follows

$$
\frac{\partial}{\partial x}\left(\frac{\partial u}{\partial t}+\frac{\partial u^{2}}{\partial x}+\frac{\partial u v}{\partial y}\right)=\frac{\partial}{\partial x}\left(-\frac{\partial \phi}{\partial x}+v\left(\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}\right)\right)
$$

$$
\frac{\partial}{\partial y}\left(\frac{\partial v}{\partial t}+\frac{\partial u v}{\partial x}+\frac{\partial v^{2}}{\partial y}\right)=\frac{\partial}{\partial y}\left(-\frac{\partial \phi}{\partial y}+v\left(\frac{\partial^{2} v}{\partial x^{2}}+\frac{\partial^{2} v}{\partial y^{2}}\right)\right)
$$To simplify matters, let us first look at LHS

$$
\frac{\partial}{\partial t}\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right)+\frac{\partial^{2} u^{2}}{\partial x^{2}}+\frac{\partial^{2} v^{2}}{\partial y^{2}}+2 \frac{\partial^{2} u v}{\partial x \partial y}
$$

$$
\Rightarrow \frac{\partial D}{\partial t}+\frac{\partial^{2} u^{2}}{\partial x^{2}}+\frac{\partial^{2} v^{2}}{\partial y^{2}}+2 \frac{\partial^{2} u v}{\partial x \partial y} \text {, where, } D=\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right)
$$

Solution Method-III

5/20

- Looking at RHS
$\frac{\partial}{\partial x}\left(-\frac{\partial \phi}{\partial x}+v\left(\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}\right)\right)+\frac{\partial}{\partial y}\left(-\frac{\partial \phi}{\partial y}+v\left(\frac{\partial^{2} v}{\partial x^{2}}+\frac{\partial^{2} v}{\partial y^{2}}\right)\right)$
$\Rightarrow-\left(\frac{\partial^{2} \phi}{\partial x^{2}}+\frac{\partial^{2} \phi}{\partial y^{2}}\right)+v\left(\frac{\partial}{\partial x}\left(\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}\right)+\frac{\partial}{\partial y}\left(\frac{\partial^{2} v}{\partial x^{2}}+\frac{\partial^{2} v}{\partial y^{2}}\right)\right)$
$\Rightarrow v\left(\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right)\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right)\right)-\left(\frac{\partial^{2} \phi}{\partial x^{2}}+\frac{\partial^{2} \phi}{\partial y^{2}}\right)$
$\Rightarrow v\left(\frac{\partial^{2} D}{\partial x^{2}}+\frac{\partial^{2} D}{\partial y^{2}}\right)-\left(\frac{\partial^{2} \phi}{\partial x^{2}}+\frac{\partial^{2} \phi}{\partial y^{2}}\right)$

3:04PM	Solution Method-V	$7 / 20$

\square Staggered concept is used to avoid checker boarding
\square The method is explicit and uses simple central differencing.
\square For a given initial velocity and pressure distribution, the velocities are advanced for one time step using FTCS method.
\square Having obtained the velocities, new pressure distribution is obtained by solving the pressure Poisson equation. However, we need to derive the boundary conditions for ϕ
Thus we have advanced the velocities and pressure by one time step.
\square Similarly they are obtained for as many time steps as is desired.

3:04 PM	Solution Method-IV	$6 / 20$

\square Thus the Poisson equation for pressure is
$\frac{\partial}{\partial t}\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right)+\frac{\partial^{2} u^{2}}{\partial x^{2}}+\frac{\partial^{2} v^{2}}{\partial y^{2}}+2 \frac{\partial^{2} u v}{\partial x \partial y}=$

$$
v\left(\frac{\partial^{2} D}{\partial x^{2}}+\frac{\partial^{2} D}{\partial y^{2}}\right)-\left(\frac{\partial^{2} \phi}{\partial x^{2}}+\frac{\partial^{2} \phi}{\partial y^{2}}\right)
$$

$$
\left(\frac{\partial^{2} \phi}{\partial x^{2}}+\frac{\partial^{2} \phi}{\partial y^{2}}\right)=-\frac{\partial}{\partial t}(D)-\frac{\partial^{2} u^{2}}{\partial x^{2}}-\frac{\partial^{2} v^{2}}{\partial y^{2}}-2 \frac{\partial^{2} u v}{\partial x \partial y}+
$$

$$
v\left(\frac{\partial^{2} D}{\partial x^{2}}+\frac{\partial^{2} D}{\partial y^{2}}\right)
$$

\square Note that D has not been taken as 0 as this gives more accurate solution due to D not being zero exactly

3:04 PM u-Velocity Update	

3:04 PM	Interpolations $\begin{aligned} u_{i+\frac{1}{2}, i+\frac{1}{2}} & \equiv \frac{1}{2}\left(u_{i+\frac{1}{2}, i}+u_{i+\frac{1}{2}, i+1}\right), \\ v_{i+\frac{1}{2}, i+\frac{1}{2}} & \equiv \frac{1}{2}\left(v_{i, i+\frac{1}{2}}+v_{i+1, j+\frac{1}{2}}\right), \\ u_{i, j} & \equiv \frac{1}{2}\left(u_{i-\frac{1}{2}, i}+u_{i+\frac{1}{2}, i}\right), \\ v_{i, j} & \equiv \frac{1}{2}\left(v_{i, i-\frac{1}{2}}+v_{i, i+\frac{1}{2}}\right) . \end{aligned}$

$$
\left[\begin{array}{rl}
3: 04 \mathrm{PM} \text { Discretised Pressure Poisson Eq. } \\
\begin{array}{rl}
\left(\frac{\partial^{2} \phi}{\partial x^{2}}+\frac{\partial^{2} \phi}{\partial y^{2}}\right)=-\frac{\partial}{\partial t}(D)-\frac{\partial^{2} u^{2}}{\partial x^{2}}-\frac{\partial^{2} v^{2}}{\partial y^{2}}-2 \frac{\partial^{2} u v}{\partial x \partial y}+v\left(\frac{\partial^{2} D}{\partial x^{2}}+\frac{\partial^{2} D}{\partial y^{2}}\right) \\
\frac{D_{i, j}^{n+1}-D_{i, i}}{\delta t} & =-Q_{i, i}-\frac{\varphi_{i+1, j}+\varphi_{i-1, j}-2 \varphi_{i, j}}{\delta x^{2}} \\
& -\frac{\varphi_{i, j+1}+\varphi_{i, i-1}-2 \varphi_{i, j}}{\delta y^{2}} \\
& +\nu\left(\frac{D_{i+1, j}+D_{i-1, j}-2 D_{i, j}}{\delta x^{2}}\right. \\
& \left.+\frac{\left.D_{i, j+1}+D_{i, j-1}-2 D_{i, j}\right),}{\delta y^{2}}\right)
\end{array},
\end{array}\right.
$$

$$
\begin{aligned}
& { }^{3.04 \mathrm{PM}} \\
& \text { Source Term for Pressure Poisson Eq. } \\
& \left(\frac{\partial^{2} \phi}{\partial x^{2}}+\frac{\partial^{2} \phi}{\partial y^{2}}\right)=-\frac{\partial}{\partial t}(D)-\frac{\partial^{2} u^{2}}{\partial x^{2}}-\frac{\partial^{2} v^{2}}{\partial y^{2}}-2 \frac{\partial^{2} u v}{\partial x \partial y}+v\left(\frac{\partial^{2} D}{\partial x^{2}}+\frac{\partial^{2} D}{\partial y^{2}}\right) \\
& Q_{i, i}=\frac{\left(u_{i+1, j}\right)^{2}+\left(u_{i-1, i}\right)^{2}-2\left(u_{i, i}\right)^{2}}{\delta x^{2}} \\
& +\frac{\left(v_{i, j+1}\right)^{2}+\left(v_{i, i-1}\right)^{2}-2\left(v_{i, j}\right)^{2}}{\delta y^{2}}+\frac{2}{\delta x \delta y} \\
& \cdot\left[\left(u_{i+\frac{1}{2}, i+\frac{3}{3}}\right)\left(v_{i+\frac{1}{2}, i+\frac{1}{2}}\right)+\left(u_{i-\frac{1}{2}, i-\frac{1}{1}}\right)\left(v_{i-\frac{1}{2}, i-\frac{1}{2}}\right)\right. \\
& \left.-\left(u_{i+\frac{1}{1}, i-\frac{1}{2}}\right)\left(v_{i+\frac{1}{2}, i-\frac{1}{2}}\right)-\left(u_{i-\frac{1}{j}, i+\frac{1}{2}}\right)\left(v_{i-\frac{1}{2}, j+\frac{1}{3}}\right)\right] .
\end{aligned}
$$

$\begin{aligned} & \text { 3:04 PM } \quad \begin{array}{c} \text { Pressure Poisson Solution } \\ \frac{\varphi_{i+1, j}}{}+\varphi_{i-1, j}-2 \varphi_{i, i} \\ \delta x^{2} \\ \\ +\frac{\varphi_{i, j+1}+\varphi_{i, i-1}-2 \varphi_{i, j}}{\delta y^{2}}=-R_{i, i} \\ R_{i, i} \equiv Q_{i, i}-\frac{D_{i, j}}{\delta t}-\nu\left(\frac{D_{i+1, j}+D_{i-1, j}-2 D_{i, i}}{\delta x^{2}}\right. \\ \\ \left.+\frac{D_{i, j+1}+D_{i, j-1}-2 D_{i, j}}{\delta y^{2}}\right) . \end{array} \end{aligned}$

Pressure Solution

17/20
\square Pressure will be solved for all the interior cells.
\square Since it involves D of all the neighbours, D of the ghost cells have to be evaluated.
\square This would imply, we need to specify velocities at the extreme boundaries of ghost cell.This is done by invoking the condition that D for ghost cell has to be zero
Continuity for the fluid cell and ghost cell imply
$\frac{0-u_{1}}{\Delta x}+\frac{v_{2}-v_{1}}{\Delta y}=0$

$$
\frac{u^{\prime}-0}{\Delta x}+\frac{-\left(v_{2}-v_{1}\right)}{\Delta y}=0
$$

- Addition of the two equations imply

$$
u^{\prime}=u
$$Thus all the exterior velocities are equal to the corresponding interior velocityThe boundary condition for pressure for vertical walls can be obtained from the steady momentum equation as follows:

$$
\begin{aligned}
& \frac{\partial u^{2}}{\partial x}+\frac{\partial u v}{\partial y}=-\frac{\partial \phi}{\partial x}+v\left(\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}\right) \\
& \Rightarrow u \frac{\partial u}{\partial x}+v \frac{\partial u}{\partial y}=-\frac{\partial \phi}{\partial x}+v\left(\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}\right)
\end{aligned}
$$

3:04 PM

20/20
\square Thus for right wall $\phi^{\prime}=\phi+\frac{2 v u^{\prime}}{\Delta x}$
For left wall

$$
\phi^{\prime}=\phi-\frac{2 v u^{\prime}}{\Delta x}
$$For top wall

$$
\phi^{\prime}=\phi+\frac{2 v v^{\prime}}{\Delta y}
$$For bottom wall $\phi^{\prime}=\phi-\frac{2 v v^{\prime}}{\Delta y}$That completes all the necessary details

