ME-704 —CMTFE
Solution of Navier-Stokes Equations-III
MAC Method

Introduction-|

» We had seen the stream function and vorticity
formulation in our previous class

» Now we shall look at the finite difference formulation
developed by the Los-Alamos National Lab in US.

» This method was originally called SOLA (some call it
MAC) and has been subsequently modified for many
specific cases including multi-phase flows.

» We shall restrict it for incompressible flows
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Solution Method-I

O The conservative form of the incompressible NS
equations in the absence of body forces and with
uniform viscosity can be written as
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U To generate an equation for pressure, we differentiate the

sgpomentum equations and add them 3

3:04 PM Solution Method-II 4/20

Q This is done as follows
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U To simplify matters, let us first look at LHS
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Solution Method-IlI

U Looking at RHS
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Solution Method-IV

O Thus the Poisson equation for pressure is
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U Note that D has not been taken as 0 as this gives more

accurate solution due to D not being zero exactly
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Solution Method-V 720

O Staggered concept is used to avoid checker boarding

O The method is explicit and uses simple central
differencing.

O For a given initial velocity and pressure distribution, the
velocities are advanced for one time step using FTCS
method.

O Having obtained the velocities, new pressure
distribution is obtained by solving the pressure Poisson
equation. However, we need to derive the boundary
conditions for ¢

O Thus we have advanced the velocities and pressure by
one time step.

O Similarly they are obtained for as many time steps as is
desired.
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3:04PM u-Velocity Update
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3:04 PM v-Velocity Update
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3:04 PM Interpolations
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3:04 PM . 13/20
Source Term for Pressure Poisson Eq.
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3:04 PM Boundary Conditions 16/20

U External velocities required in the ghost cells have to be
specified using boundary conditions

U We shall restrict ourselves to no slip wall conditions.

U The external velocities are specified such that linear
interpolations on the boundary shall satisfy the required
boundary condition.

U This implies v' = -v for FLUID SIDE | QUTSIDE
vertical wall. '

[ T

O Similarly u' = -u for ¢
horizontal walls. [ ] &

O We shall discuss the
pressure boundary
condition in next few
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O Addition of the two equations imply
W=u
U Thus all the exterior velocities are equal to the
corresponding interior velocity

U The boundary condition for pressure for vertical walls
can be obtained from the steady momentum equation as

follows:
ox dy  ox ox® 9y’

SIS
ox dy  ox ox>  ay’

304 PM Pressure Solution 17720
O Pressure will be solved for all the interior cells.
O Since it involves D of all the neighbours, D of the ghost
cells have to be evaluated.
U This would imply, we need to specify velocities at the
extreme boundaries of ghost cell.
U This is done by invoking the condition that D for ghost
cell has to be zero
O Continuity for the fluid cell and | rwe soe | oursie
ghost cell imply e | o |
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O On the wall u, v and a_u are all zero.

a2,
O This implies that % is also zero
d
2 ; ’_ ’
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, 2w’
QO Thus for right wall ¢ =@+ A

, 2w’

Q For left wall =p——
p=¢ A

, vy

O For top wall =0+ v
Ay

vy

O For bottom wall o =¢-

Ay

O That completes all the necessary details
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